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ABSTRACT

In addition to drastic reductions in global carbon dioxide emissions, the Intergovernmen-
tal Panel on Climate Change has stated with high confidence in the most recent Assessment
Report that carbon dioxide removal will be needed in order to meet the Paris Agreement tem-
perature goals. Direct air capture is a novel carbon dioxide removal technique that is gaining
attention for its potential contribution to the carbon removal portfolio of solutions. As its
primary barrier to deployment is high costs, there is a focus within the academic and climate
community to understand how this technology could reach lower costs by mid-century.

This thesis investigates potential scale-up and cost-reduction pathways for existing di-
rect air capture methods using technological change theory. The literature review provides
context for carbon dioxide removal techniques, direct air capture, and technological change
theory. Analogous technologies are reviewed for cost-reduction drivers and compared against
the common direct air capture methods. This comparison is used for learning and improve-
ment rate analysis to estimate cost reductions for mature direct air capture methods, then
used for identification of levers players in the direct air capture market ecosystem can deploy
to accelerate scale-up and cost reductions.

The results suggest solid sorbent direct air capture methods could achieve costs of $100-
$400/tonCO2 by 2050, while liquid solvent methods may reach $100-$220/tonCO2 in the
same time period. The results of the analog analysis emphasize the importance of a variety
of direct air capture stakeholders in accelerating the technology’s scale-up and cost reduc-
tions. Policymakers can provide impact by developing standards for MRV and accounting
for carbon dioxide removal techniques. The private sector can set clear requirements for
carbon removal purchases, focused on purchasing proven, durable, measurable methods that
can provide clear paths for cost reductions. Finally, direct air capture providers can focus
on early design choices that enable these cost reductions and work as a community toward
building economies of scale in manufacturing. The findings indicate that the technology may
reach cost-competitive thresholds by mid-century and that stakeholders across the direct air
capture ecosystem have opportunities to accelerate this transition.

Thesis supervisor: Dr. Bruce G. Cameron
Title: Director, System Architecture Group
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Chapter 1

Introduction

1.1 Motivation

Over the last several years, there has been an increasing consensus within the scientific
community that in order to meet the goal of holding below a change of 1.5-2°C compared
to pre-industrial levels, directly removing carbon dioxide (CO2) from the atmosphere and
permanently storing it will be necessary [46], [49], [53], [96]. While ongoing efforts to abruptly
lower our current emission levels will remain the critical focus for achieving these objectives,
accelerating the understanding and commercialization of carbon removal options must be
accomplished in parallel. The UN Intergovernmental Panel on Climate Change (IPCC)’s
Sixth Assessment Report section released in April 2022 states, “Pathways that limit warming
to 2°C (>67%) or lower involve some amount of CDR to compensate for residual greenhouse
gas emissions remaining after substantial direct emissions reductions in all sectors and regions
(high confidence)" [53].

The techniques of directly removing carbon dioxide from the atmosphere are generally
referred to as Carbon Dioxide Removal (CDR) techniques. These range from more con-
ventional techniques that are land-based and immediately available, such as afforestation
and reforestation, to novel techniques that utilize a variety of approaches to store carbon1

geologically, in the ocean, or in products. The majority of these novel techniques are still
in development or in the very early stages of implementation [96]. Examples include direct
air capture (DAC) with carbon capture and storage (DACCS), enhanced rock weathering
(ERW), and bioenergy with carbon capture and storage (BECCS).

According to the 2023 report “The Current State of Carbon Dioxide Removal”, the CDR
activities in operation today remove approximately 2 GtCO2 per year, almost all from con-
ventional techniques focused on land management [96]. In contrast, only approximately 0.002
GtCO2 per year of removal comes from novel techniques at present [96]. Considering the
IPCC’s estimate of needing 2.8 (0.5-11 range) GtCO2 per year of non-conventional removal
in 1.5°C scenarios by 2050, there is considerable scaling that needs to be accomplished over
the next 25 years [53].

1For ease of reading, "carbon" will be used interchangeably with "CO2" and "carbon dioxide" throughout
this thesis.
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1.2 Background

While a large portfolio of CDR techniques will likely be needed, a significant portion of future
removal is expected to come from novel techniques. Many of these techniques have lower land-
use requirements than conventional techniques, as well as more options for higher storage
durability [96]. DAC is a novel technique in particular that has gained significant attention
in both industry and the public sector recently, largely due to its clarity in measurement and
verification of the amount of carbon removed and stored compared to other techniques [44].

Unfortunately, DAC does come with complex challenges. Unlike the more traditional
point source capture used in industrial plants to capture CO2 in post-combustion processes
where concentrations may range from 3%-30%, DAC captures carbon from ambient air where
concentrations are closer to 0.041% [36]. This means that it has to process vast amounts
of ambient air to capture worthwhile amounts of carbon to store. Another key challenge is
the amount of energy that is needed to facilitate this process, made even more difficult if it
must be clean energy to avoid additional carbon emissions. These two challenges lead to the
largest overarching challenge for this technology: cost.

Despite these challenges, Climeworks became the first company to sell third-party cer-
tified CDR services to several corporate clients, including Microsoft, Shopify, and Stripe,
through their DAC technology in January 2023 through a partnership with Carbfix to ge-
ologically sequester the captured carbon [7]. The U.S. Government has also shown keen
interest in supporting this technology development through recent legislation. The 2021
Infrastructure Investment and Jobs Act committed over $3.5 billion in funding for the devel-
opment of four regional DAC hubs across the country, with varying levels of support to be
rewarded depending on the phase of development (feasibility, design, or build) [68]. The 2022
Inflation Reduction Act also substantially increased the 45Q tax credit support for DAC,
going from $50/tonne of CO2 with DAC to $180/tonne with geologic storage from DAC and
to $130/tonne with utilization from DAC [44].

Similar to how CDR techniques can be broken down into multiple types of removal,
DAC can be decomposed into many different methods of capture. The two most common
methods are using solid adsorbents (S-DAC) and using liquid aqueous basic solutions (L-
DAC), both of which are energy intensive [46]. However, many additional emerging methods
try to address the issue of high-energy use through novel methods such as electro-swing
processes and moisture swing adsorption [76]. These are much earlier in development but
could provide future scalable optionality.

For technology this early in development, it is important to consider how and when it will
transition from prototype and demonstration to commerciality. In the report “Accelerating
the Low Carbon Transition”, Victor et al. describe three key phases in any system transition:
emergence, diffusion, and reconfiguration. The emergence phase is characterized by the
formation of many niches for a new technology, where buyers in the niches are willing to pay
much more for the technology than the average buyer, unique use cases are identified, and
experimentation and learning are prevalent. This is where DAC currently lies as it starts to
find niche markets like early government investment and private sector funding. Movement
to the diffusion stage may occur if costs can be lowered through additional innovation, higher
technical performance emerges, and functional requirements are better defined. [104]
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1.3 Objectives

As with any creation of a new market, scaling up CDR will take time and is bound to en-
counter various complex challenges along the way. In the case of direct air capture, successful
deployment is tightly linked to its ability to come down the cost curve swiftly. This thesis
aims to shed light on this process by addressing the following essential questions, seeking to
unravel the potential trajectory of these cost reductions:

1. The IPCC estimates needing 2.8 (0.5-11 range) GtCO2/yr of non-conventional carbon
removal by 2050, but current removal rates are well below this. If DAC adoption
and cost reduction behave similarly to solar PV or other analogous technologies, what
contribution can it realistically expect to make to the CO2 removal portfolio?

(a) How might scale-up rate and cost reduction vary by DAC method?

(b) What does the literature identify as the key drivers for analogous technology
learning and improvement, and how do those compare to the various DAC meth-
ods?

(c) What role are the public and private sectors currently playing in advancing the
DAC market, and how does this compare to analogs?

2. Based on the answers to Question 1, what actions could be taken in the near term
regarding DAC by governments, DAC providers, and DAC purchasers to help accelerate
the reduction of DAC costs?

1.4 Outline

To facilitate the investigation of the research questions in Section 1.3, this thesis is structured
as follows:

• Literature Review: Chapter 2 provides an overview of the current direct air capture
landscape as relevant to this thesis. It begins with context around CDR and how DAC
fits into the emerging CDR portfolio. It then zooms in directly to DAC, describing
how it works, key barriers to implementation, and its current and forecasted ecosystem.
Finally, a review of the literature regarding technological learning and improvement
provides a framework for exploring the potential cost-reduction pathways of DAC.

• Method and Framework: Chapter 3 begins by framing the methods that are used
for the analysis. It then collects and documents key assumptions and inputs utilized
by the analysis.

• Results: Chapter 4 reports the results of the analysis. It begins with the analog as-
sessment results for each DAC technique, then provides the results of the cost reduction
studies. It concludes with sensitivities to help give context to the range of potential
outcomes.
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• Discussion: Chapter 5 describes the insights gained from the analysis results through
the lens of the research questions. Based on those insights, actions that stakeholders
within the DAC industry may take to accelerate cost reductions are proposed.

• Conclusions: Chapter 6 provides conclusions and recommendations for governments,
DAC providers, and DAC purchasers to help accelerate the reduction of DAC costs
given the results of the analysis. It also lays out recommendations for future studies
in this field.
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Chapter 2

Literature Review

Context around three key concepts is important background information to understand for
this thesis. These include types of and need for carbon dioxide removal; understanding of
direct air capture and its ecosystem; and the theory of technological change. This chapter
provides the context for each concept and helps bring the reader up to speed on the research
landscape relevant to the analysis.

2.1 Carbon Dioxide Removal

Historical anthropogenic greenhouse gas emissions, particularly over the past century, have
caused a gradual increase in the earth’s average temperature [50]. The annual carbon diox-
ide equivalent emissions at a global level have almost reached 40 GtCO2/yr as of 2022 [43].
"Natural" land and ocean sinks can absorb about one-half of this emission rate, but after
years of emissions exceeding sink capacity, an overall increase in atmospheric CO2 concen-
tration of approximately 125ppm over the last 150 years has been observed [80]. A focused
international effort is underway to lower these emissions to curb this warming and the effects
it is having on the planet.

In 2015, 195 of 198 parties within the United Nations Framework Convention on Climate
Change (UNFCCC) signed the Paris Agreement [102]. This agreement was a strong recog-
nition of climate change and the first major binding agreement across this many countries
to take action to address it [103]. The agreement includes the following objective, which will
hereto be referred to as the Paris Temperature Goal within this thesis:

"Holding the increase in the global average temperature to well below 2°C
above preindustrial levels and pursuing efforts to limit the temperature
increase to 1.5°C above pre-industrial levels."

This temperature goal remains the point of reference for most modeling efforts from the
major climate change bodies. While it does not specify a timeframe in which to accomplish
the goal, using the phrase "holding below" indicates the intent is to avoid overshooting this
temperature at any point in the future.

It is recognized that in order to meet the Paris Temperature Goal, carbon dioxide emis-
sions will need to be significantly reduced worldwide. The techniques associated with these
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emission reductions are commonly referred to as climate mitigation options, which can in-
clude options like replacing fossil fuel use with renewable energy, increasing the energy effi-
ciency of existing systems, or capturing carbon emitted when burning fossil fuels before it is
released into the atmosphere [53]. These strong reductions in emissions are critical to com-
bating climate change and should occur as rapidly as possible using a portfolio of mitigation
techniques.

One additional mitigation technique that is emerging as a key contributor to climate
change efforts is Carbon Dioxide Removal (CDR). Climate mitigation scenarios that included
CDR were first included in the Intergovernmental Panel on Climate Change’s (IPCC) Fourth
Assessment Report (AR4) modeling, but have grown quickly in number since [52] [51] [77]. In
the most recent assessment report, AR6, the IPCC stated with strong confidence that CDR
will be needed alongside steep emission reductions to meet the Paris Temperature Goal [53]
[50]. They define CDR as "Anthropogenic activities removing carbon dioxide (CO2) from
the atmosphere and durably storing it in geological, terrestrial, or ocean reservoirs, or in
products".

Smith et al. in The State of Carbon Dioxide Removal further define CDR using three
core principles [96]:

• Principle 1: The CO2 captured must come from the atmosphere, not from fossil sources.
The removal activity may capture atmospheric CO2 directly or indirectly, for instance
via biomass or seawater.

• Principle 2: The subsequent storage must be durable, such that CO2 is not soon rein-
troduced to the atmosphere.

• Principle 3: The removal must be a result of human intervention, additional to Earth’s
natural processes.

These principles are useful in creating distinctions between CDR and other climate change
mitigation actions. Principle 1 helps distinguish CDR from point-source carbon capture
(PSC), which focuses on capturing CO2 at industrial plants that burn fossil fuels. Principle 2
helps differentiate CDR from other short-term carbon removal actions more akin to recycling
CO2, like the use of synthetic fuels made from emitted CO2 that would immediately be
released back into the atmosphere upon use. Principle 3 clarifies that only actions that add
additional removal of CO2 count as CDR. Some argue that CDR should even be labeled
completely separately from mitigation techniques in the categorization of climate actions to
help with these distinctions, but there is not clear consensus in the literature on this [77].

While it is not a reasonable substitute for deep emission reductions across the globe,
CDR can fulfill several roles within the climate change mitigation ecosystem. In the near
term, it can help reduce net emissions by offseting emissions as sectors ramp up activities
to perform these critical deep reductions. Mid-term, it can help offset emissions from the
hard-to-abate sectors, particularly those that have a higher cost for emission reduction than
CDR emission offsets to reach global net zero. Long-term, this segment could potentially
provide net negative emissions, such that the global net emissions are below zero and can
offset historical emission accumulation. [53]
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Figure 2.1: Examples of negative emission technologies and their classification within the
CDR ecosystem

The technologies associated with CDR are often referred to as Negative Emission Tech-
nologies (NETs). There are many different NETs being pursued, ranging from more con-
ventional techniques like afforestation and reforestation to novel techniques like BECCS and
DACCS [37]. Figure 2.1 shows some of the most common NET categories for reference. The
number of NETs is rapidly growing as this new industry begins to take shape [96]. It is
important to recognize that at this time there is no silver bullet approach as each technique
has considerable benefits and challenges; instead, a wide portfolio of NETs will be needed to
reach the scale of removal needed to support the Paris Temperature Goal [77].

Two critical aspects of CDR when comparing across techniques are (1) the durability of
the CO2 storage and (2) the reliability of monitoring, reporting, and verification (MRV). The
scale of durability might range from a few years to hundreds or thousands of years depending
on the technique pursued. MRV quality also varies drastically across techniques, but will
ultimately be the mechanism for validating if an action should count towards carbon offset
or removal goals. The need for MRV governance across techniques has specifically been cited
as the most critical need for CDR policy by Smith et al. in the 2023 State of CDR report.
[96]

2.1.1 Nomenclature

Due to the large number of CDR techniques under investigation, determining a consistent
classification system is helpful. Even within the climate community, however, there is still
varying nomenclature used to describe these various groupings of CDR techniques. The
Carbon Business Council and over 100 carbon removal experts sent an open letter to the
UNFCCC as recently as May 2023 in an attempt to clarify language regarding CDR within
an Information Note released by the organization. Within the note, the label "engineering
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based activities" was applied to several CDR techniques discussed. The letter recommended
avoiding this distinction as most CDR techniques are varying degrees of nature and engi-
neering. [14]

Early literature in the CDR domain often defines subclasses as "nature-based" versus
"engineered" or "industrial-based" solutions, similar to the nomenclature used by the UN-
FCCC above. However, caution has been raised against using this classification system since
most techniques incorporate some combination of nature and engineering. Some argue that
all CDR techniques should just be referred to by their characteristics rather than introducing
an intermediate classification system [15]. Others have proposed using the classification sys-
tem of "conventional" versus "novel" to avoid this conflict [96]. This is a helpful distinction
in that it helps clarify between solutions that are very mature and deployed at large scale
versus ones that are emerging more recently as the world works to find new ways to combat
climate change.

2.1.2 Conventional techniques

Conventional techniques of CO2 removal make up about 98% of the 2 GtCO2/yr of removals
currently in existence [96]. All of these techniques are land-based, and include some of the
most well-known and heavily researched removal techniques, like afforestation and reforesta-
tion [77]. Other land use and management practices also fall into this category, such as
general forest management, restoration of peatland and wetlands (also referred to as coastal
blue carbon), soil carbon practices, and agroforestry.

A clear benefit of most conventional techniques is that they are relatively inexpensive
compared to novel techniques [77]. Another is that they are generally familiar to the public
with an overall positive perception, especially for afforestation and reforestation [96]. The
majority of these techniques rely on managing how society uses land and restores specific
plant species. They are generally well-understood and many are ready for immediate imple-
mentation.

One of the main limiting factors in scaling up these conventional techniques is the value of
additional carbon removal versus utilizing that same land for food production. This limita-
tion prevents conventional techniques from being able to scale to a level that can fully cover
the level of need for carbon removal. Despite this, it is still expected to make a significant
contribution to the CDR portfolio, particularly in the short term as novel techniques scale
up. All types of novel techniques are not immune to this same concern regarding land use,
but conventional techniques are particularly vulnerable to this sustainability challenge at a
certain level of use. [80]

Other challenges with conventional CDR include MRV and durability. Many of these
techniques are particularly susceptible to storage reversal if not maintained properly long-
term [77]. An example of this would be a tree that is cut down after credit has been
taken for CO2 removal. While there is a large range of reliability across the spectrum of
conventional techniques, some have significant challenges with regard to MRV based on
current understanding and require additional research [96]. Despite these challenges, these
conventional CDR techniques can be very valuable in the short term as more novel, long-
duration removal options are scaled up.
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Figure 2.2: High-level process that direct air capture methods generally follow

2.1.3 Novel techniques

Novel CDR encompasses the remainder of techniques being investigated for carbon removal.
These techniques currently contribute very little to annual CO2 removal rates, at about 0.002
GtCO2/yr. It is expected that these techniques will constitute a much larger percentage of
the CDR portfolio in the future, as many of these techniques are less constrained by land
use than conventional techniques. Examples of techniques that fall into this category include
bioenergy with carbon capture and storage (BECCS), enhanced rock weathering, biochar,
ocean alkalinization, and direct air capture (DAC). [96]

Due to the large amount of variability of techniques within the Novel CDR group, there
are few overarching benefits and challenges that apply to all in the group. In general, many
of these techniques have more clear approaches to MRV when compared to Convention CDR,
but not all. Many also offer more long-term durability through underground CO2 storage
and mineralization. However, many are not yet ready to be deployed commercially, whether
due to high capital costs or the need for additional study. [80]

2.2 Direct Air Capture

Direct air capture is emerging as a CDR technique of particular interest for many companies
and CDR buyers [98]. It encompasses a variety of methods that use chemical reactions
to pull CO2 out of the atmosphere that can then be utilized or stored, depending on the
application. Since almost half of annual CO2 emissions are from distributed sources [1], this
ability to remove CO2 from ambient air is particularly appealing to many.

In its most general form, this CDR technique involves pulling ambient air into the DAC
system, putting that air in contact with a solvent to draw down the CO2, releasing the CO2

through a process called regeneration, then compressing and preparing the concentrated CO2

for transportation to where it will be stored [36]. This process can be visualized in Figure
2.2. Despite this common overall process, many different methods of DAC are being pursued
today by varying solvent types and regeneration processes.
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Since land use is one of the key restrictions to many other CDR techniques, it can
be helpful to understand DAC’s use in comparison. The National Academies of Sciences,
Engineering, and Medicine estimate that a 1 MtCO2/yr DAC system removes the same
amount of CO2 on an annual basis as approximately 20 million trees spanning about 100,000
acres [80]. They estimate an average DAC plant of this size at a 65-75% capture rate may
require about 6-425 acres of land for the actual plants depending on the configuration, plus
an estimated additional 550-25,500 acres for indirect land use and power generation. This
land use varies considerably based on the DAC method used and the power source, but more
study is needed to understand the realistic range better.

Because they both involve using solvents to extract CO2 from air, direct air capture and
point source capture (PSC) are often confused with one another. However, they differ in a
critical way: DAC pulls CO2 out of ambient air, while PSC captures CO2 from a specific
industrial facility or plant that combusts fossil fuels for energy [8]. This means that DAC
can be used as a carbon-negative technology, while PSC can only ever be carbon-neutral
at its best [87]. PSC is therefore part of the climate change mitigation portfolio but is not
considered a carbon removal technique.

One additional key difference between the two carbon capture techniques is the concen-
tration of CO2 in the air processed by each system. Depending on the type of power plant
or industrial facility the PSC is paired with, CO2 concentrations range between 3-30%. Al-
ternatively, ambient air that DAC processes target contains just 0.041% CO2. This means
that DAC systems must process significantly more air than PSC systems to remove the same
amount of carbon, which can lead to more energy needs and higher costs. [36]

2.2.1 DAC Methods

There are currently many different approaches to direct air capture as a CDR technique.
Despite following the general functions of capturing through contact, regenerating CO2, and
storing the CO2, each method varies the execution form of one or several of these steps.
Figure 2.3 shows some of the most common variations for each of these steps along with
the relative Technology Readiness Level (TRL) designations. Utilization is greyed out in
the Storage Method portion of the figure since current utilization methods do not meet the
requirements of a CDR technique for DAC (see Section 2.2.2 for more details).

Within the literature, the various methods are typically named based on their capture
method. As shown in the figure, the four overarching methods in development today are
Liquid Solvent DAC (L-DAC), Solid Sorbent DAC (S-DAC), Electro-Swing Adsorption DAC
(ESA-DAC), and Membrane-Based DAC (m-DAC). The capture method chosen limits the
options for regeneration methods based on how strongly the CO2 is bonded in the capture
phase. L-DAC and S-DAC are the two DAC methods that have reached the pilot scale, while
the other two are still in the lab phase of development. Both S-DAC and L-DAC are in the
process of commercialization and have considerably more literature devoted to their study
than other methods. [46]

Three DAC companies in particular are leading in the deployment and commercialization
process: Climeworks, Carbon Engineering, and Global Thermostat. There are currently
18 plants in operation across the world, all of which are operated by one of these three
companies. Climeworks and Global Thermostat both use variations of the S-DAC method,
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Figure 2.3: Summary of direct air capture methods currently being pursued

while Carbon Engineering uses L-DAC. [47]
Despite these three companies leading in the commercialization space, there are many

other companies active in the growing DAC industry. As of July 2023, there are 65 DAC
companies that have joined the DAC Coalition, which is likely not inclusive of all in the
industry but provides an idea of how quickly the number of companies is growing [21]. Some
that publicly share information about their method of capture are listed in Table 2.1, along
with their level of maturity and country of origin.

While most in the table are variations of S-DAC, there are a few instances of m-DAC and
ESA-DAC. Given the low TRL for these methods, there is still limited information available
for these methods [76]. They are still desirable to investigate further despite the immaturity
due to the potential for lower energy use, which could ultimately lead to lower DAC costs.

L-DAC

The use of liquid solvents for DAC is a process that has been built off of the existing tech-
nology of separating CO2 from gas mixtures, such as natural gas [97]. These processes have
been used commercially for over seventy years in various applications, but the requirement
of producing concentrated CO2 streams for storage from lower concentration gas mixture
(ambient air) makes DAC application more complex and costly without additional innova-
tion [37]. Carbon Engineering is the company commercially pursuing this form of DAC, with
one pilot plant in operation and the largest DAC commercial plant set to begin operating in
2024 [47]. This plant will have a capacity of 1,000,000 tonCO2/yr.

L-DAC begins by contacting ambient air with liquid solvents that have a high affinity
for absorbing CO2, such as potassium hydroxide. The solution with the dissolved CO2 then
goes through a series of steps to regenerate the CO2 as a concentrated stream. It is first
precipitated as a solid mixture that enables recycling of the solvent back to the prior stage,
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Company Location Maturity Method
Mission Zero Technologies UK Founded 2020 ESA-DAC
RepAir Carbon Capture Israel Founded 2020 ESA-DAC
Verdox USA POC/Pilot in progress ESA-DAC
Capture6 USA Founded 2021 L-DAC

Carbon Engineering Canada Pilots operating; Construct-
ing commercial facility L-DAC

Carbyon Netherlands Founded 2019; demo m-DAC
Aircapture USA Founded 2019 S-DAC
AspiraDAC Australia Founded 2022 S-DAC

Carbon Collect USA Prototype constructed (Me-
chanicalTree) S-DAC

CarbonCapture USA Set to operate 2023 S-DAC

Climeworks Switzerland Multiple operating pilots &
commercial plants S-DAC

Global Thermostat USA
Multiple pilots (not oper-
ating) and two commercial
construction projects

S-DAC

Heirloom Carbon USA Founded 2021; successful
demonstration S-DAC

Ifininitree USA Operating pilot S-DAC
Noya USA Founded 2020 S-DAC
Removr Norway Founded 2022 S-DAC
Skytree Netherlands Operating pilot S-DAC
Soletair Power Finland Operating pilot S-DAC
Sustaera USA Founded 2021 S-DAC

Table 2.1: Examples of currently active DAC companies

26

https://www.missionzero.tech/
https://www.repair-carbon.com/
https://verdox.com/
https://capture6.org/
https://carbonengineering.com/
https://carbyon.com/
https://www.aircapture.com/
https://www.aspiradac.com/
https://carboncollect.com/
https://www.carboncapture.com/
https://climeworks.com/
https://www.globalthermostat.com/
https://www.heirloomcarbon.com/
http://www.infinitreellc.com/
https://www.noya.co/
https://www.removr.no/
https://www.skytree.eu/
https://www.soletairpower.fi/
https://www.sustaera.com/


then it is heated to a high temperature around 900◦C with oxygen to release the CO2 from
the precipitant and produce a pure CO2 stream for compression and storage. The precipitant
material can be recombined with water to be recycled to the precipitant step. Due to the
strong bond between the CO2 and the precipitant, L-DAC is generally only paired with the
temperature-swing regeneration technique. [32]

There are several benefits and challenges unique to L-DAC. It can be run continuously
and at large scales, which can be beneficial for economies of scale capture. However, due to
the high temperature needed for regeneration, it currently requires natural gas combustion as
an energy source, which emits more CO2 that must be recovered or accounted for in the total
net CO2 removed calculation. This method can also have heavy water usage requirements
depending on the ambient conditions at the plant location. [47]

S-DAC

As shown in Table 2.1, the majority of companies in the DAC industry are currently focused
on variations of S-DAC [8]. This is a less mature DAC process compared to L-DAC and has
more space for quick learning and innovation that could drive cost reductions [47].

In solid sorbent DAC, ambient air is drawn into the system and contacted with a solid
sorbent that adsorbs the CO2. The regeneration phase can then begin, where the mixture
undergoes heating at low temperatures of around 100◦C or less, pressure changes, humidity
changes, or some combination of these to regenerate the sorbent and release the concen-
trated CO2. Since the process uses adsorption instead of absorption, a weaker bond is
created between the CO2 and the sorbent, allowing for more regeneration options and lower
temperature requirements compared to L-DAC. [32]

Similar to L-DAC, S-DAC faces unique benefits and challenges. Due to the lower tem-
perature requirements, it is more easily paired with renewable or low-carbon energy for
electricity and thermal requirements. Rather than using water for operations, some forms of
S-DAC can actually produce water as a by-product which may be beneficial in some commu-
nities. The size of S-DAC units can also be relatively small, allowing for modularization and
a larger range of applications. However, sorbent costs are very high and the units cannot
run continuously as each must individually cycle between capture and regeneration. [47]

Climeworks is the leading commercial company utilizing a form of S-DAC, with 15 DAC
plants across the world that have capacities ranging from 3-4,000 tonCO2/yr [47]. The 4,000
tonCO2/yr plant, Orca, achieved third-party verification of its DAC carbon removal process
in January 2023, which was a first for the DAC industry [7]. It is currently the only company
offering carbon removal through DAC as a product [47].

Emerging DAC Technologies

Two alternate DAC methods that are being investigated include ESA-DAC and m-DAC.
Both are still in the laboratory level of study but could provide future opportunities for
DAC if successful [47].

Electro-swing adsorption uses an electrochemical cell for the separation of CO2 from air.
When ambient air is contacted with the negatively charged electrode within the cell, the
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CO2 is adsorbed. A positive charge is then applied to release the CO2, which can then be
compressed and prepared for storage. [105]

The ESA-DAC technology has been shown to be more energy efficient than the traditional
DAC methods in higher CO2 concentration streams but has only yet been proven at lab
scale down to concentrations of 0.6%, which is not quite as low as outdoor ambient air
[47]. The method also faces unique challenges specific to electrochemical systems that must
be addressed before it is ready for commercial scale [6]. However, several companies and
researchers are actively pursuing this method. If successful, ESA-DAC could deliver a less
energy-intensive, very modular alternative to the more mature DAC methods.

An even less mature DAC method is m-DAC. It involves the separation of CO2 through
the use of multiple stages of separation via membranes [30]. Keith et al. argue that this
method is generally impractical due to the force required for membrane use at such low
concentration of CO2 in ambient air [61]. It is still a method being actively studied for point-
source capture use since this application has a higher CO2 concentration. Any breakthroughs
in PSC application could initiate future DAC innovations [47].

2.2.2 Storage vs. Utilization

Once the CO2 is separated out from the ambient air, something must be done with it. In
current DAC workflows, this means either storage or utilization. Either option has potential
upsides and drawbacks.

Carbon utilization has the benefit of creating immediate monetary value for the extracted
CO2. Examples of utilization options include use in carbonated beverages or greenhouses,
the creation of high-quality concrete, enhanced oil recovery, and the creation of synthetic
fuels. The current drawback to utilization is that, at least in its current state, it is essentially
CO2 recycling at best, rather than actual CO2 removal, except in the case of long-duration
storage in concrete. Most utilization methods release the carbon back into the atmosphere
within a short time period. Utilization will likely be instrumental in bringing down the cost
of direct air capture as a technology, as it will be the primary way to make companies in the
industry profitable until the cost of DACCS approaches buyer willingness to pay for carbon
removal. [87]

Storing the carbon instead of using it is a much more durable practice and therefore
qualifies as carbon removal. It is most commonly stored either in its supercritical state
underground through a process called sequestration or stored as a solid by injecting it as a
liquid solution into basalt or other reactive rocks, which is sometimes referred to as carbon
mineralization. Because these processes can store carbon so effectively for massive time
scales, they are often referred to as permanent removal methods. [80]

2.2.3 Barriers to Implementation

The critical barrier to utilizing DAC is deftly summarized by Howard Herzog in his book
Carbon Capture: "The question for DAC is not whether we can suck CO2 out of the air, but
whether we can do it economically on a large scale" [37]. Multiple methods exist that can
successfully complete the goals of DAC today as described in Section 2.2.1, but they are at
such high costs that they are not economically competitive for carbon removal.
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This high cost is primarily driven by the significant amount of energy required for op-
eration, particularly the thermal energy in the regeneration stage [80]. The cost of sorbent
materials for S-DAC can also involve massive capital expenditures, especially if they have a
short lifetime [76]. While improvements in cost are likely as experience and learning grow,
the energy requirements set by thermodynamics will set a cost floor for the technology given
the current methods [36].

Other barriers include materials use, land use, humidity challenges in certain areas, and
water use. Water use varies by DAC method since some S-DAC technologies can actually
produce water. Land use impacts are lower compared to many other land-based CDR tech-
niques, but still worth considering especially if onsite power systems are utilized. Indirect
land usage should also be considered, as specific spacing between units may be required for
optimal operations. Concerns have also been raised around the impact of low levels of CO2

near large facilities on crops and local ecosystems. [80]
The flexibility in location for DAC plants is often cited as a key benefit of DAC, but

permitting and access to locations near underground storage could still create challenges
[36]. Cooperation and engagement with local communities can help ease some of these
challenges, but it is something to consider as operations are scaled up.

Despite these barriers, according to the IPCC DACCS faces the fewest constraints other
than its cost compared to all other known CDR techniques [53]. Bringing down the costs of
this technology will be critical for its successful deployment for carbon removal.

2.2.4 Larger DAC Market Ecosystem

As recognition from the IPCC that CDR will be necessary to meet the Paris Temperature
Goals has grown, the energy around DAC and its potential contribution to the CDR port-
folio has escalated. This section provides a high-level overview of the current ecosystem
through the lenses of public policy support, private sector purchases, and the DAC providers
themselves. This ecosystem will be a key component of understanding potential future DAC
costs.

Public Policy Support

According to the IEA, Canada, the European Union, the United Kingdom, and the United
States have taken the lead in supporting DAC across the spectrum of development, from
early R&D to demonstration and deployment [47]. While other countries are also providing
support, these four have the most extensive policies in place.

The U.S. has passed two pieces of legislation since 2020 that are specifically beneficial for
DAC development. The first is the Infrastructure Investment and Jobs Act (IIJA), otherwise
known as the Bipartisan Infrastructure Law, in 2021 [101]. This bill commits $3.5 billion
toward the creation of four DAC hubs within the US, along with an additional $115 million
in funding for pre-commercial and commercial DAC prizes. The second critical bill is the
Inflation Reduction Act (IRA), which changed the tax credits associated with Section 45Q
of the Internal Revenue Code [45]. The passage of this legislation increased the tax credit for
DAC with underground storage in saline formations from the prior amount of $50/tonCO2 to
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$180/tonCO2 and also adjusted the capacity requirements for DAC tax credit qualification
from 100 MtCO2/yr to 1 MtCO2/yr.

Additional policy progress is being made in the U.S. at a more local level. California,
New York, Massachusetts, and Maryland are leading in general CDR policies and taking
a portfolio approach that can be inclusive of DAC [74]. The California Low Carbon Fuel
Standard (LCFS) law in particular allows DAC projects anywhere globally to receive traded
credits on average of $200/tonCO2 as long as they meet the standards of the program [47]
[11]. This credit can be combined with the 45Q credit for DAC projects that meet the
requirements of both programs. When looking across states, DAC is noted as the technology
most preferred by states for R&D funding [74], likely due to the DAC hub program.

Globally, DAC policies are also growing. While this thesis will not go into specific laws
globally, what is important is that CDR and CCUS policies, and DAC eligibility by extension,
have hundreds of millions of USD equivalent funding across the development process in at
least four countries. Some laws focus solely on DAC, while others are just inclusive of the
technology with funding or credits for DAC methods that meet the requirements. [47]

Private Sector Purchasers

Since 2020, DAC companies have raised around $125 million in investments [47]. Despite
the growing government funding support globally, the private sector is also becoming active
in DAC investment.

In 2020, the company Stripe announced that it had prepurchased 322.5 tonCO2 of Clime-
works’s DAC with storage carbon removal for $775/tonCO2 [85]. By 2021, Shopify [17] and
Microsoft [18] had also announced commitments to purchase carbon removal through Clime-
works. The three joined together with Alphabet, Shopify, Meta, and McKinsey in 2022 to
launch Frontier, an Advance Market Commitment (AMC) focused on accelerating perma-
nent carbon removal technologies with a $1B commitment through 2030 [28]. The group
expanded to include Autodesk, H&M Group, JPMorgan Chase, and Workday a year later,
adding another combined $100M to the fund [29]. Since its launch, the AMC has purchased
from fifteen CDR startups, four of which focus on direct air capture.

The idea behind an AMC is to encourage the development of a product by signaling a
demand where supply is lacking. It was first used to stimulate the development of vaccines
for low-income countries in 2007 [66]. In 2021, Athey et al. wrote an opinion article in
Politico recommending a similar action be taken for CDR to expand the available portfolio
[2]. The Frontier AMC was launched a few months later with this goal.

The Frontier AMC is not the only player private sector currently supporting the growth
of the DAC industry. For example, the Climeworks website lists seventeen companies that
have entered long-term commitments with the company for carbon removal services as of
July 2023 [19]. Other companies are investing in the technology, often through DAC with
utilization rather than storage. Others are partnering directly with DAC companies to
advance deployment, like Oxy Low Carbon Ventures and Carbon Engineering [73].

The willingness of Frontier and other early purchasers to pay for DAC at its current costs
could help bridge the gap between high prices and the policy support mechanisms, like the
45Q tax credit and LCFS in the U.S. Alongside niche applications of DAC with utilization,
these early commitments are helping to create an early market for DAC and could help drive
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down costs to a level that additional CDR purchasers can afford [47].

DAC Providers

An overview of the technical DAC methods of the most active DAC providers is included
in Table 2.1 from Section 2.2.1. The list of DAC companies is continuously growing as the
demand from governments and the private sector continues to rise. The U.S. in particular
is seeing a large growth in companies founded since the passage of the IIJA and IRA laws.
As more players enter the field, the larger the opportunity for improvements of the various
DAC methods grows through knowledge sharing and competition across companies.

2.2.5 Cost Reduction Predictions

Experts have been debating whether or not direct air capture will come down in cost far
enough to be economical for decades [25]. In 2011, House et al. predicted the costs would
be around $1,000/tonCO2 for net removal [38]. The American Physical Society released a
highly influential study that same year estimating $780/tonCO2 avoided for their "realistic"
case, including emissions from powering the facility [97]. Since then, many experts have
studied the potential cost of this technology, predicting costs ranging from $100/tonCO2 to
$1,000/tonCO2 still [47].

Many studies are focused on eventual DAC cost, rather than initial costs that come
with first-of-a-kind (FOAK) plants. However, a few studies do look at both. Fuss et al.
estimate FOAK plant costs to be in the range of $600-$1000/tonCO2 based on their extensive
literature review in 2018 [31]. Keith et al. provide detailed cost estimates for an L-DAC
FOAK plant in the range of $168-$232/tonCO2 (2016$) based on Carbon Engineering’s
design [62]. Initial costs for S-DAC are more straightforward, as the reported price for
Stripe’s carbon removal purchase through Climeworks is $775/tonCO2 [85]. Climeworks’s
cost of $600/tonCO2 is sometimes referred to in the literature, but this is based on gross
removal, not total net removal [36]. Boston Consulting Group released a study as recently
as June 2023 in which they estimate FOAK costs for L-DAC as $880/tonCO2, S-DAC as
$1,705/tonCO2, and ESA-DAC as $1,415/tonCO2 [3].

The same Boston Consulting Group report shows dramatic cost reduction potentials for
each of the technologies: L-DAC as low as $100/tonCO2, S-DAC as low as $70/tonCO2,
and ESA-DAC as $95/tonCO2 [3]. In the 2019 report on negative emission technologies, the
National Academies of Sciences, Engineering, and Medicine estimate a range of costs between
$156-$506/tonCO2 for a generic L-DAC system and a range of $89-$407/tonCO2 net for S-
DAC using various energy sources1 [80]. Fuss et al. provide an estimate of nth plants
of $200/tonCO2, with a full range of costs from $100-$300/tonCO2 [31]. Keith et al. also
provide detailed cost estimates for nth L-DAC plant designs in the range of $94-$170/tonCO2

[62]. Climeworks reports having a roadmap of how they will reach $200/tonCO2 removal
costs by 2025 for their S-DAC design [33].

A concern raised by Howard Herzog and others is that often cost estimates for DAC are
on a gross removal basis, rather than a net CO2 removed since the DAC process usually

1Excludes the scenario that utilized coal as an energy source for S-DAC since this method is not usually
paired with coal.
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involves some energy use that is not carbon-emission free [36] [76]. This can be tricky when
comparing across estimates when gross vs. net is not specified. All costs reported in this
section are for net removal costs upstream of compression, transportation, and storage unless
otherwise noted.

2.3 Technological Progress Estimation

With the introduction of any new technology, there is usually a desire to understand how the
costs will change over time. For a technology like direct air capture whose primary barrier
to commercial growth is cost, this desire is particularly strong. The theory of technological
change is one approach used extensively across the literature to forecast this behavior, es-
pecially for energy-related systems [4] [56] [75] [81]. While there are multiple approaches to
estimating cost reductions for technologies within technological change theory, two stand out
as the most common: 1) the use of Wright’s Law which attributes cost changes to cumulative
experience [108] [109] and 2) the use of Moore’s law which attributes those changes to the
passage of time [5] [24] [64].

Most studies tend to focus on one approach or the other, but in 2013 Nagy et al. com-
pleted a study comparing the accuracy of these two approaches against each other and four
others [79]. Their study suggests that both Wright’s and Moore’s approaches demonstrated
similar performance, with Wright’s Law being the stronger of the two. Their findings sup-
port the proposal from Sahal that Moore’s Law and Wright’s Law become equivalent when
cumulative experience grows exponentially [91]. Nagy et al. note that within the database
they used for the comparison of approaches, the majority of technologies do exhibit this
exponential growth [79]. Therefore, their conclusions may not be applicable to technologies
that do not see exponential experience growth.

2.3.1 Learning Rates

In 1936, Thomas P. Wright first introduced the concept of the learning curve [106]. He
observed that there was a relationship between the number of units of a Boeing aircraft
manufactured and the number of manhours it took to manufacture each unit. This phe-
nomenon is referred to across the literature by many names, most commonly by learning
rates, experience rates, progress functions, and learning-by-doing.

While Wright’s observations centered around manufacturing and labor hours, the idea he
proposed has evolved and been used across many industries [91] [109]. It is now recognized
as the most common and most research-supported approach for estimating technological cost
reductions [100]. For energy-related technologies, it has frequently been used to relate cost
reductions to installed capacity or production as an estimate of cumulative experience [57]
[59] [108]. Equation 2.1 shows the classic formula for this application:

Y = axb (2.1)

where Y is the unit cost of the technology at a given time, a is the unit cost of the first
unit, x is the cumulative experience, and b is the rate of the cost reduction. The learning
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rate (LR) is determined by b as shown in Equation 2.2:

LR = 1− 2b (2.2)

where LR is the learning rate. The progress ratio (PR) is also often regularly reported in
the literature, which is shown in Equation 2.3:

PR = 1− LR (2.3)

Equation 2.4 is an adapted version of Equation 2.1 that relates the cumulative experience
to the capacity installed at a current time relative to time zero. Since cumulative installed
capacity is the most common way of representing experience for energy technologies [16],
this form of the equation is seen frequently across the literature:

C(xt) = C(x0)

(
xt

x0

)b

(2.4)

where Cxt is the cost of the technology at a given time, Cx0 is the initial cost, xt is the
cumulative installed capacity at time t, x0 is the cumulative installed capacity at the start
of the analysis, and b is the rate of cost reduction as described in Equation 2.1.

The equations listed are the single-factor or one-factor approach of learning curve use.
However, there are many other versions of learning rate analysis used across the literature.
While one-factor models are the most common, the most common multi-factor approach
seen in the literature is the two-factor approach. This approach uses both learning-by-doing
and learning-by-research rates independently of one another, then sums the combination of
the two to find the overall learning rate. An even more detailed analysis approach is the
component approach. Both of these will be discussed in more detail in Section 2.3.3. [89]

Despite the regular use of learning curves for energy technologies, there is a considerable
amount of caution provided by experts for use. For example, Junginger et al. point out that
deciding the appropriate boundaries for analysis can drastically change the results found by
learning rates like the time period of study, geographical boundaries, and other financial
factors [57]. Another issue often argued is the necessity to include a cost floor for learning
curve analyses to ensure costs don’t fall unreasonably far for a given technology [75] [65] [90].

One key consideration when using experience curves is deciding what to use as the start-
ing point for the analysis. This can be particularly tricky when applying analog historical
learning curves to relatively new technologies since it has been observed that costs often
increase rather than decrease in the early commercialization stage of deployment for new
technologies [90] [9]. This time period before learning curves are applicable is often referred
to as the pre-learning phase. To account for this, academics sometimes utilize an assumed
cumulative capacity that must be reached before learning begins [4] [90]. In contrast to this,
Ferioli et al. suggest that ideally, the analysis start point would be at production time zero
[27]. However, they do note that it is often more practical to choose the start of the analysis
based on current cumulative production instead.

Another similar but different criticism of early learning curve periods is that initial small
capacities scaling up quickly can result in excessive price drops over a single year if learning
curves are applied blindly. Kouvaritakis et al. address this issue by applying a cap on any
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single-year cost reduction [65]. Overall, there is no consensus in the literature on how to
handle the start of learning curve analysis. It is apparent, though, that this should be a key
consideration when undergoing a new analysis.

Despite most technologies experiencing a positive learning rate, negative learning rates
are possible. This occurs when prices increase over time for a technology, rather than the
typical reduction. Reasons for this specifically in energy technologies have been attributed
to oligopolistic behaviors [65], costly regulatory restrictions [56], and experience depreciation
over long periods of time if facilities are built less regularly [75].

2.3.2 Improvement Rates

Rather than basing the rate of cost reduction on cumulative experience, improvement rate
calculations simplify things by relating the cost reduction to time. This was first proposed by
Gordon E. Moore in 1965 when he predicted that every two years the number of transistors
on integrated circuits would double [78]. Equation 2.5 shows the accompanying formula for
the observation, today known as Moore’s Law [79]:

Y = B ∗ e−mt (2.5)

where Y is the unit cost of the technology at some time, t, B is the unit cost at time zero,
and m is the improvement rate.

Using Moore’s law simplifies cost reduction estimates dramatically compared to learning
rate analyses since the assumptions on how much experience is gained over time are removed
from the calculation. It has been expanded upon and extended to other technologies since
Moore’s original observation, such as energy technologies. Christopher L. Magee in partic-
ular has worked with many coauthors using patent analysis combined with Moore’s law to
estimate technological improvement for various energy technologies [5] [26] [95].

While not as common in the literature for energy technologies as learning rate analyses,
improvement rate analyses can still provide insight into how technology costs are changing
over time. It is yet another lens through which technological progress can be viewed to get
a better overall picture of potential change paths.

2.3.3 Multi-Factor Approaches

One key criticism of one-factor learning rate analyses is that they assume learning-by-doing
is the only effective driver of cost reductions being estimated [93]. Because of this potential
oversimplification, it has been suggested that one-factor models are often more optimistic
than reality [70]. Multi-factor technological change models attempt to address these concerns
by including more detail in the analysis.

Two-factor analysis is one multi-factor analysis approach that addresses this concern. It
is one of the most common multi-factor analysis approaches seen across the literature for
energy technologies [56] [89]. This approach typically includes one learning-by-doing factor
and another learning-by-research factor focused on R&D spend over time [65]. Two key
criticisms of this approach include the reliability and availability of data on R&D spend in
both the public and private sectors and the interconnections of these two variables [108].
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Another multi-factor approach that avoids these concerns is the component-based ap-
proach. This approach simply expands the traditional learning curve formula to include
a factor for each component within a system decomposed to some level chosen by the re-
searcher, then sums the subsystems to understand the system level [27] [108]. By approaching
the problem in this way, the analysis can account for different levels of maturity and com-
plexity for the components that make up a technology [89]. It also has been suggested to
help explain why learning curves often seem to flatten over time, as some components may
mature faster than others [27]. Equation 2.6 shows this application to 2.4:

C(Qt) =
∑

C0i

(
Qti

Q0i

)−bi

= C01

(
Qt1

Q01

)−b1

+ ...+ C0n

(
Qtn

Q0n

)−bn
(2.6)

where C(Qt) is the total cost of the technology at a given time t, C0i is the initial cost of
each component i, Qti is the cumulative installed capacity at time t of each component, Q0i

is the cumulative installed capacity for each component at the start of the analysis, and b is
the rate of cost reduction as described in Equation 2.1.

This same idea can also be applied to improvement rate estimations. Equation 2.7 shows
the multi-factor version of Equation 2.5 for this use:

Y =
∑

Bi ∗ e−mit

= B1 ∗ e−m1t + ...+Bn ∗ e−mnt
(2.7)

where each variable of Equation 2.5 is now expanded into each component i.
Similar to other approaches for estimating technological progress, the component ap-

proach does have criticisms within the literature. It struggles with accurate information at
the right level of detail as discussed for two-factor approaches [89]. The concerns raised
with early learning and other uncertainties noted in one-factor analyses can also be applied
at a component level with this approach, such that the overall uncertainty in the results is
potentially higher upon aggregation [108].

2.3.4 Application to Direct Air Capture

Learning curves have been utilized for estimating direct air capture costs by several re-
searchers, with many different interpretations of appropriate analog rates. In 2012, Nemet
and Brandt proposed using learning rates of 10% from carbon capture at power plants for
DAC as the closest analog [83]. Fasihi et al. directly refute this proposal in 2019, saying
it is more appropriate to use a learning rate of 15% due to DAC’s high modularity [25].
They point out that similar modular energy technologies see averages in this range as there
are more opportunities for standardization at an international level and massive economies
of scale. Breyer et al. support this, citing a range of 10%-15% as realistic [8]. Azarabadi
and Lackner choose a rate of 20% for their DAC learning rate analysis, citing solar PV, fuel
cells, and electrolysis as analogs in both their 2020 and 2021 economic assessments [4] [67].
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Finally, McQueen et al. use the full range of 10%-20% for their 2021 analysis specifically for
S-DAC costs to understand the range of outcomes for this method [76].

From these papers, some similarities can be noted. First, all use learning rates for their
analysis; none found focus on improvement rates. All but Nemet and Brandt focus on one-
factor analysis for DAC, while they investigate a component approach using three factors:
capital cost, energy cost, and O&M cost [83]. Only McQueen et al. specified which DAC
method their analysis was focused on. While most provide context around why a given
learning rate is chosen, this component of each analysis is not described in much detail.

Considering these gaps in the literature, this thesis aims to analyze the potential future
costs of DAC through several lenses. First, an analysis is conducted to better understand
an appropriate analog technology for each of the most common DAC methods. Then these
results are used to perform one-factor LR and IR analyses and component-based LR and IR
analyses for both S-DAC and L-DAC methods. This allows for comparison across estimation
approaches for each DAC method and for comparison across DAC methods.
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Chapter 3

Method and Framework

This chapter first describes the approach used to answer the research questions identified in
Section 1.3. It then compiles the necessary inputs for the learning and improvement rate
analyses. These inputs include initial DAC cost estimates, DAC’s anticipated experience
growth rate, the system decomposition by DAC method, and the key drivers for each analog
technology considered for comparison to DAC methods in Chapter 4.

3.1 Problem Formulation

As described in the Literature Review, while there are many ways to estimate how the
cost of a given technology may reduce over time, the most common approaches are using
Wright’s law for learning rates or Moore’s law for improvement rates. While the literature
shows that either approach should yield similar results in the short term [79], this thesis
uses both approaches to explore the range of probable outcomes for DAC cost reductions
through two lenses: one-factor learning/improvement rate analysis and component-based
learning/improvement analysis.

The estimation of the cost reduction using Moore’s law is relatively straightforward since
time is the independent variable utilized. Key inputs include the improvement rate and the
initial cost, as described in Section 3.2. It is worth noting that the availability of improvement
rate data is somewhat scarce and only available for some analogs being assessed. This is
discussed further in Section 3.2.4.

Using learning rates for cost reduction estimation adds complexity to the analysis by
requiring an estimate of DAC experience over time if the results are to be compared to the
Paris Temperature Goal. Assumptions for this portion of the analysis are described in Section
3.2.2. Other key inputs include learning rates and initial cost, which are described in more
detail in Section 3.2. Learning rate estimates are very common for all analog technologies
being compared and have been well summarized by key papers utilized for the analysis.

3.1.1 DAC Methods Considered for This Assessment

Before beginning the analysis, the scope boundaries must be defined. The first of these
boundaries is the methods of DAC to include for evaluation. Within the relatively young
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DAC industry, a dominant design has not yet emerged [46] [31]. As seen from the literature
review, there is still a wide range of methods being investigated and pursued. Therefore,
the range of assessment for this thesis has been limited to several of the most common
approaches: S-DAC, L-DAC, ESA-DAC, and m-DAC. All four will be assessed in the analog
analysis, but only S-DAC and L-DAC will be investigated in the cost reduction analysis.

While the CO2 captured by DAC systems can be utilized or stored, the scope of this
analysis will focus solely on pairing DAC with storage. While DAC with utilization will likely
be a key enabler for bringing down the cost of DAC systems overall through niche markets,
most applications for utilization at this point are carbon neutral rather than carbon negative
since they are not storing the CO2 for a long duration [54] [82] [87] [98]. This analysis is
focused on the cost of DAC when used as a carbon removal technology and will therefore
consider the cost of sequestration as part of the calculations.

3.1.2 Framing of DAC Analog Analysis

The analog analysis investigates several energy technologies that have had enough techno-
logical change over time to infer a learning or improvement rate. Through the literature
investigation in Section 3.2.4, drivers for each technology’s rate of change are identified.
These are crucial inputs for the one-factor learning/improvement rate analysis and also help
provide context within the component-level analysis.

Once identified, these drivers are compared against the four DAC methods to determine
an appropriate analog for each in Section 4.1. The learning and improvement rates for each
analog can then be used to estimate how one may expect the cost to change over time for the
two most mature methods: S-DAC and L-DAC. It also helps identify levers that governments
and DAC providers could utilize to help accelerate cost reductions moving forward. This
will be discussed in more detail in Chapter 5.

Since ESA-DAC and m-DAC do not yet have pilot-scale operations, these technologies
are not included in the cost reduction analysis. Instead, these DAC methods are included
in the analog analysis to support future studies. Their inclusion in the analog analysis also
provides insight into opportunities for companies to consider to enable future cost reductions
through early architectural decisions.

3.1.3 Framing of DAC System Decomposition Analysis

The system decomposition approach breaks down DAC technology into subsystems for more
detailed cost reduction forecasting. This enables the analysis to capture variance in cost
reductions at the component level, since different components of the system may be at
varying levels of maturity. The methodology utilized for this analysis closely follows that of
Rubin et al. for the application of point-source CO2 capture [90]. The DAC systems are
decomposed into subsystems, a learning rate is applied to each, then the cost of the total
system is calculated based on the sum of the subsystems. A typical learning curve can then
be applied to this result to directly compare the total system cost to that calculated from
the one-factor analysis.

Due to data availability, only the two most mature DAC methods are investigated using
this approach: S-DAC and L-DAC. Since both have reached pilot-level operations, signif-
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icantly more information on how these systems integrate together and their approximate
costs is available for assessment.

It is worth noting that the lack of inclusion of the other DAC methods in the decom-
position assessment does not indicate that these methods will not be key contributors to
DAC as a net negative technology in the future. In fact, if some of these methods can be
implemented at a commercial scale, they could be instrumental in bringing DAC down the
cost curve by utilizing less energy-intensive carbon removal techniques [94] [105]. However,
given the limited amount of detailed information available for these methods in the literature
at this time, it is most effective to consider these only for the analog analysis.

3.2 Inputs for Analysis

Several key inputs must be compiled to complete this analysis. The first is an initial cost
assumption for the DAC methods in scope. Next, future DAC capacity scale-up assumptions
are described as an approximation of experience to perform the learning rate analyses. A
system decomposition for DAC to be utilized in the component learning and improvement
analyses is then devised. Finally, evaluation criteria for the analog analysis are developed.

3.2.1 Initial Cost Estimates

As discussed in Section 3.1, only S-DAC and L-DAC are considered for cost reduction anal-
ysis since they are both mature enough for robust current or actual cost estimates. All
calculations will assume 2024 as the starting year for the analysis. Cost estimates vary
drastically between the two methods due to very different system materials and processes.
Therefore, each will have a different initial cost assumption based on the existing commer-
cial operations and literature estimates. It is also worth noting that much of the literature
is focused on eventual capture costs for nth systems, not necessarily initial first-of-a-kind
(FOAK) costs. This distinction is carefully considered for this choice of initial estimates.

As Climeworks is the only S-DAC company with commercial CDR operations, their
reported price for Stripe’s carbon removal purchase of $775/tCO2 is utilized [85]. Since this
price includes both capture and storage, the storage portion of the price is removed for this
analysis since it is solely focused on the price of CO2 capture. The approximate price of CO2

storage with Climework’s storage partner, Carbfix, on their website is listed as $25/tCO2

[13]. This puts the initial price of S-DAC for the analysis at $750/tCO2.
L-DAC does not yet have commercial operations, but detailed cost estimates are available

in the literature. Keith et al. explored the cost of this method in detail and found that a
range for initial costs of $168-$232/tCO2 (2016$) is appropriate for a FOAK plant based on
Carbon Engineering’s baseline process and pilot operations [62]. In a more recent study that
breaks down DAC costs by method and components, the National Academies of Sciences,
Engineering, and Medicine report a range of $156-$506/tCO2 for a generic L-DAC system’s
net removal cost across a range of energy sources; however, this study does not specify if
these cost ranges are for FOAK or nth plant assumptions [80]. The large range of costs
can be attributed to the variation of emissions across the energy sources included in the
study and the associated cost to capture the additional carbon emissions, plus a variance
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of price quotes and sources for the components that make up the system. Regardless of
whether they are looking at initial or final costs, this range has estimates that exceed the
Carbon Engineering prediction. Considering the full range of costs across the literature for
this method, an L-DAC average initial capture cost is chosen at $330/tCO2 for this thesis.

Since these initial cost estimates are using reported CO2 purchase amounts, these are
technically prices and likely include some inherent margin. However, price and cost will be
used interchangeably throughout the thesis for readability.

3.2.2 DAC Experience Growth

To perform the portion of the analysis that uses learning rates, assumptions must be made
regarding how DAC experience will grow. For energy technologies, this is usually approxi-
mated through cumulative capacity growth [75]. For the base analysis, the "CO2 capture by
direct air capture 2020-2030" dataset compiled by the International Energy Agency (IEA) is
utilized [40]. The "Operating capacity" and "Advanced development" project capacity esti-
mates are summed and extrapolated to 2050 as the baseline global capacity growth trend.

The total global capacity is considered to be evenly divided between S-DAC and L-DAC
for this analysis. This is based on the existing breakdown of projects in IEA’s database
[40]. While more companies in the industry are focused on S-DAC methods, L-DAC system
capacities are much larger such that the overall project capacities between the two methods
are split fairly evenly in the planned project list.

It is worth noting that this may be a relatively conservative DAC capacity forecast as it
only considers projects far into development and currently operating; however, it provides
a strong baseline for cost reduction expectations. For this reason, several capacity growth
sensitivity cases are also considered in the analysis with varying degrees of DAC implemen-
tation. Some focus on what could be expected based on announced projects while others
focus on what would be needed to meet the Paris Temperature Goal. Table 3.1 outlines
these additional sensitivity cases. Figure 3.1 shows how the scaling rates compare to one an-
other for reference, excluding the analog scale-up rates since those will be chosen in Chapter
4. Announced project extrapolations are noted by squares, while goal-derived forecasts are
indicated by diamonds. The total UK emissions from 2022 are also shown in Figure 3.1 for
reference of the scale of removal capacity compared to actual emission levels [88].
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Figure 3.1: Plot of DAC capacity scale-up scenarios considered

Case Description Source

Base Projection: Projects in IEA’s DAC Projects dataset
listed as operating or in advanced development [40]

Analog Scale-Up Projection: Assumes DAC capacity scales at the
same rate as the chosen analog for LR analysis [23]

IEA All Projects Projection: Base scenario plus the IEA-identified
early development projects [40]

IPCC AR6
Goal-derived: Average of DAC capacity across AR6
scenarios that meet the Paris Temperature Goals
(C1-C3 scenarios)

[10]

IEA WEO STEPS Goal-derived: DAC capacity from IEA’s World En-
ergy Outlook Stated Policies scenario [48]

IEA WEO NZE Goal-derived: DAC capacity from IEA’s World En-
ergy Outlook Net Zero Emissions scenario [48]

Table 3.1: DAC capacity scale-up scenarios considered
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3.2.3 DAC System Decomposition

For the component analysis, each DAC system is broken down into smaller components
with an individual learning or improvement rate due to the assumption that some system
components will have a cost change more rapidly than others. First, the systems are split
into capital expenses (CAPEX), operating expenses (OPEX), and costs associated with
capturing the generated emissions from operating. Then the systems are further divided
into components based on function within the capture process.

Cost assumptions for each component system are based on the DAC techno-economic
analysis in the Negative Emissions Technologies and Reliable Sequestration: A Research
Agenda report from the National Academies of Sciences, Engineering, and Medicine to gen-
erate a percentage contribution of that component to total system cost [80]. Since the study
is focused on eventual DAC costs and not FOAK costs, these percentages are then applied
to the initial costs defined in Section 3.2.1 for each method. Examples of costs that are not
explicitly included in the technical system decomposition that are incorporated in the total
initial cost estimates include land-purchase or leasing costs, insurance, G&A, and profit mar-
gins. The subsystem learning and improvement rates are chosen based on each component’s
novelty, scalability, and similarity to other technologies.

The generated emissions costs strongly depend on the type of energy used for electricity
and thermal energy, as more carbon-intensive sources will result in more costs to recover the
emitted carbon. This provides an estimate of net CO2 removed rather than just absolute
CO2 captured. This results in a more realistic cost estimate for using DAC as a carbon
removal technique, rather than just a carbon-neutral one.

S-DAC Decomposition

In the Negative Emissions Technologies and Reliable Sequestration report, five scenarios are
considered, ranging from best to worst outcomes for S-DAC costs. Within the study, the
authors specifically mention that both the "1-Best" and "5-Worst" scenarios are not expected
to be reached. Therefore, the S-DAC decomposition costs for this analysis are based on the
"2-Low", "3-Mid", and "4-High" scenarios that are cited as more realistic outcomes. The
resulting percentage contributions to the total cost of the system are shown in Figure 3.2.
The "Generated CO2 Capture" box represents the additional costs for capturing the CO2 that
is generated by running the system. The assumed energy source is solar for both electricity
and thermal energy, so these generated CO2 capture costs are relatively low compared to
other components. [80]

L-DAC Decomposition

The L-DAC information presented in the Negative Emissions Technologies and Reliable Se-
questration report provides a range of costs due to the maturity of the technologies in the
conceptual process analyzed by the committee, rather than the multi-scenario analysis done
for S-DAC. For this thesis, an average of the high and low costs for this range has been used
to create a representative mid-case for L-DAC. The resulting percentage contributions to
total cost of the system are shown in Figure 3.3. [80]
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Figure 3.2: S-DAC System decomposition of by cost based on Negative Emissions Technolo-
gies and Reliable Sequestration 3-Mid Cost Scenario

Figure 3.3: L-DAC System decomposition by cost based on average of low and high cost
ranges from Negative Emissions Technologies and Reliable Sequestration analysis
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Analog Learning Rate Source Improvement Rate Source
Solar PV 23% [89] 9% [5]
Wind Energy 12% [89] 2.9% [5]
Natural Gas Plants 14% [89] 7% [95]
Hydropower Plants 1.4% [89] not available
Nuclear Power - [89] not available

Table 3.2: Analogs included for this analysis alongside their assumed learning and improve-
ment rates

3.2.4 Analogs and Key Drivers for Technological Change

In preparation for the comparison of existing technologies to DAC, an investigation of key
drivers for historical cost trends of each analog is needed. This section addresses this need,
first by identifying which technologies will be considered for the analysis, then by outlining
the major factors that contributed to their rate of change in cost per the literature.

For this analysis, only energy-related analogs are included. Energy technologies involve
significant up-front capital investments whose life cycles last for many years, if not decades,
with slow payoffs over time [63]. Because of this, innovations can often come at a slower
rate and existing energy systems can be more difficult to displace [82]. Given these unique
characteristics, the scope of the analog assessment has been limited to energy systems.

Table 3.2 shows each of the analogs considered, along with the assumed learning and
improvement rates if chosen as the appropriate analog. Only solar, wind, and natural gas
plants were identified as having an analysis completed for improvement rates, so hydropower
and nuclear plants will not be available for this portion of the analysis. Learning rates
are much more common across the literature, and a summarized mean one-factor learning
rate has been pulled for each technology from the Rubin et al. comprehensive study on
electricity supply technology learning rates for use in this thesis [89]. It is worth noting that
Rubin et al. determined that the mixed results on nuclear plants for having both positive
and negative learning rates indicate this technology may not be an applicable use case for
learning-by-doing, which is reflected in the table.

The following subsections outline the key drivers for cost improvement over time for each
technology based on the available literature. This supports the creation of evaluation criteria
for comparison against DAC technologies to determine the appropriate analogs in Section
4.1.

Solar PV

Solar PV technology has demonstrated higher learning rates than any other energy tech-
nology [75] [89]. It is therefore held as the gold standard to aim for by many with regard
to future energy technologies. Because of this, there is a significant amount of information
regarding solar PV’s cost reductions and learning rates in the literature [67] [76] [82].

The most exhaustive investigation of solar PV’s cost reductions over time to date can
be found in Gregory F. Nemet’s book, How Solar Energy Became Cheap: A Model for
Low-Carbon Innovation. He systematically lays out a comprehensive history of solar PV
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technology and his findings for the key drivers for its dramatic cost reductions over the
last 70 years. He identifies 11 key factors that enabled solar PV to scale as it did, with
the goal of creating a model for future energy technologies to build off of to accelerate
scaling. The factors are subdivided into three categories: (1) attributes that are specific
to the technology itself that enabled scaling, (2) aspects of the production process, and (3)
characteristics of the global adoption process. This is summarized in Table 3.3. In addition
to these solar-specific characteristics, two additional factors are included in the table under
the category of "external support" as they are actions driven by stakeholders external to
solar PV providers that enabled cost reductions. While he does not explicitly list them in
the solar PV characteristics lists, he does identify them as essential enablers to its scale-up.
[82]

Others have studied various aspects of the improvement of solar, but this remains the
most holistic analysis. It is therefore the primary source for this technology’s analog frame-
work. To ensure consistency with the remainder of the literature, other supporting sources
that reference each factor have been added to the table.

Some of the factors listed are less intuitive to understand without additional context than
others. "Strong link to scientific phenomenon" is one of these. Nemet points out that solar
PV is closely tied to fundamental science, like the structure of atoms and how light works. He
further asserts that this strong tie to these principles closely links the development of this
technology to academia and government labs, such that government-level R&D spending
was particularly effective at building step-by-step improvements. Furthermore, since the
theory behind the technology was accessible to all through scientific articles, the fundamental
information was able to spread quickly and globally. [82]

Another factor that could benefit from additional information is "openness to technology
spillovers". This could apply to many products, but it was particularly important to solar PV
due to its modular design. This allowed for stepwise adjustments over time as other domains
like the computer industry had breakthroughs that could be applied to solar PV design and
manufacturing. It also was able to utilize learnings from wind energy commercialization,
particularly in policy structuring and incorporation into the existing power grid. [82]

The last couple of factors to highlight are "automated production suitability" and "tol-
erance for design compromise". For production automation, the modular make-up of solar
PV was key. Many production facilities only produced one level of the value chain, such
as just the full modules from receiving the cells from another facility or just the cells after
receiving wafers from somewhere else. "Tolerance for design compromise" refers to the Chi-
nese production of solar PV. They took designs that had been good enough to allow for the
niche application of solar PV in space and made compromises in efficiency and reliability
that allowed them to decrease production costs significantly compared to other countries
while meeting the needs for application for power on Earth. [82]
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Wind

While no reference specifically dedicated to analyzing the drivers for wind energy cost reduc-
tions over time was found, there was an abundance of literature available discussing learning
rates in wind energy technology and several focused on why the costs had come down over
time. These are significant for developing the evaluation criteria for the use of wind energy
as an analog for DAC.

There are many approaches across the literature for wind learning rate analyses. Some
focus on wind turbine learning specifically [22], while others focus more generally on the cost
of wind energy costs at a larger scale [39] [57]. Many that choose this method subdivide
wind energy costs into two categories: onshore and offshore [58] [89]. Onshore wind energy
costs will be the main focus of this study since these systems are more similar to the current
deployment efforts for DAC. At some point in the future, offshore wind may become a
stronger analog if DAC systems begin to move offshore. Wind turbine studies are included
in the review since they can help understand drivers of cost reductions at the system level.

Following the example of solar PV, Table 3.4 has been created to summarize key drivers
for cost reduction in wind energy found in the literature. The same categories are used for
consistency across technologies. There may be factors from solar that could also be argued
for wind, but only those specifically found as cost drivers in the literature are included.

Factor Category Impact Source

Improved technology Device Makes them cheaper and more
productive

[39]
[57]
[22]

Increase in size Device

Larger turbines mean increased
capacity per turbine, meaning
total infrastructure cost de-
creases

[39]
[57]
[22]

High capital-to-opex
ratio Device

Capital costs account for 75-90%
of wind energy costs, meaning
reductions in the production of
units has a large impact on the
$/kW costs

[39]

Reduction in cost of
technology financing Adoption

Cost of financing decreased as
confidence built in the technol-
ogy

[39]

Manufacturing scale Production
Economies of scale in manufac-
turing and supply chains reduce
the cost of each wind turbine

[22]
[58]

Public policy support External
support

A variety of policies that sup-
ported development of the wind
industry was highly impactful to
cost reductions

[22]
[71]

Table 3.4: Summarized table of wind characteristics that enabled cost reductions
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Natural Gas Power Plants

Natural gas combined cycle (NGCC) plants, also known as gas turbine combined cycle
(GTCC) or combined cycle gas turbine (CCGT) plants, largely began being used for baseload
power generation in the 1990s and 2000s. Some NGCCs were built and operated prior to
that point, but various ecosystem factors prevented the technology from becoming successful
until that time period, and increasing costs were observed. From the 1990s on, a decreasing
cost trend for NGCCs is apparent. [20]

Several studies have been done on learning rates before, after, and during the 1990s where
a clear change in trend is observed. Depending on the time period chosen, very different
results for learning are calculated [89]. The majority of studies on learning for NGCCs in
the literature focus on single-factor LRs [20] [75].

Like wind energy, energy costs for natural gas power can be calculated in multiple ways.
One can focus solely on the cost of the natural gas turbine or the cost at a plant level to
generate electricity from natural gas based on $/kW or $/kWh. Rubin et al. show that the
average learning rates across the literature for natural gas turbines or energy produced from
natural gas plants are very similar [89]. With that in mind, this study focuses on $/kW
generated by NGCC plants as the metric of interest to keep consistent across technologies.

There was limited information in the literature focused on why the NGCC plant cost
trends occurred, but some papers briefly discuss it. Table 3.5 summarizes the key factors
noted from these studies regarding NGCC plant cost trends. While this technology did not
undergo rapid cost reductions like solar and wind, the factors outlined in the table illustrate
the underlying influences on its rate of cost change. These factors offer insights into potential
parallels in cost behaviors for technologies sharing similar characteristics.

The time period covered by the average learning rate being used for this study (1980-
1998) includes both the era of negative and positive learning rates. This is a deliberate
choice to not bias the study toward overly optimistic outcomes if this is shown to be the
right technology to use as an analog for DAC. It is suggested by Kouvaritakis that actions
indicative of an oligopoly may be the cause of the negative learning rates within this time
period [65].

Hydropower Plants

Hydropower is currently and has historically been the largest contributor to renewable energy
production globally [42]. Despite this, there is very limited study on learning rates for
hydropower across the literature [92]. It is possible that this is due to its extensive history,
with the first industrial use of hydropower in 1880 [69].

The most cited paper for hydropower learning rates comes from Kouvaritakis et al. They
report a single-factor learning rate of 1.4% for both small and conventional large hydropower
plants from the period of 1975-1993 [65]. This is then cited by many other papers that include
hydropower in their learning rate assessments [75] [89]. The original paper and those that
reference it do not specify drivers for the reduction in costs for the technology nor the time
period covered for the rate estimation, just the rate itself.

Another calculation of a learning rate for hydropower comes from Jamasb. He calculates
two-factor learning rates for various electricity generation technologies. For hydropower,
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Factor Category Impact Source

Complex systems
with individualized
project costs

Device

Plants are generally designed and
produced on an individual basis,
leading to flexibility in size but
difficulty in standardizing early
on

[20]

Derived from a com-
bination of mature
technologies

Device

Technology was created from
combining steam turbine and in-
dustrial gas turbines, rather than
new scientific development

[20] [9]

Relatively low capital
with similar OPEX
cost compared to
other energy sources

Device

Compared to other energy sources
at the time (coal, oil, nuclear),
NGCCs had relatively low capital
costs and short construction time,
increasing competitiveness

[20] [9]

Eventual standardiza-
tion of components
for plants

Production

Standardization at a module level
allowed for cost reductions in unit
price by making production easily
repeatable

[20]

Table 3.5: Summarized table of natural gas characteristics that drove cost trends through
study timeframe

Factor Category Impact Source

Long plant lifetime Device Plants average 80 years or more
of use once built

[41]
[69]

Site-limited technol-
ogy Device

Installation is limited based on
where water resources are avail-
able

[107]

Large variety of
plants sizes in use

Device/
Produc-
tion

Installations cover a large range
of capacity based on the available
water and head, from less than
1kW to 22.5GW; limits standard-
ization

[69]
[107]

Mature technology Adoption
Has been used industrially since
1880 with no studies found fo-
cused on early adoption

[41]
[69]
[86]

Government owner-
ship Adoption

Over the time period studied
for LR, the majority of facilities
were planned, developed, and
operated by governments

[86]

Table 3.6: Hydropower characteristics that are assumed to explain its learning rates
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learning-by-doing rates of 1.96% and 0.48% are calculated for large and small hydropower
technologies, respectively. The time period of investigation for each of these is 1980-1998
for large and 1988-2001 for small hydropower. For large hydropower, this indicates that the
learning rates reported only review a very mature time period, which is supported by the
"mature" classification it is assigned. Since these are two-factor estimates, these learning
rates are not seen across the rest of the literature focused on one-factor learning rates. [55]

The final calculation of a hydropower learning rate comes from Yao et al. [107]. Their
study used a multi-factor approach and calculated a learning rate of 12.25% over the period
of 2010-2018. They also attempted to calculate a one-factor learning rate for each technology
studied, but note that the one-factor model failed for hydropower due to cost increases over
the time period studied.

Given this lack of more detailed information on cost change drivers, the criteria listed in
Table 3.6 will be used for the comparison to DAC, based on the examples of solar, wind,
and natural gas.

Nuclear Plants

Nuclear plants are unique compared to the other energy technologies included as potential
analogs for this study in that they show increasing price trends with cumulative installation
several times over their history [35] [89]. This would indicate a negative learning rate over
these time periods. While this is certainly not what a new energy technology would want
to emulate, it is important to include it in the study to check for similarities between the
technologies. If found, this could serve as an early warning sign of possible cost increases
over time, rather than the desired learning-by-doing that is anticipated by the industry.

Grubler suggests that using learning rates is not applicable in the case of nuclear power
in his investigation of the costs of the French nuclear power scale-up. Despite this being
considered the most successful experience with nuclear power, the increasing costs over time
still show a negative learning rate. Due to the technology itself, he notes increasing system
complexity over time as countries gained more experience constructing, operating, and re-
acting to problems with the plants. It is worth noting that this study specifically focuses on
France with some comparisons to the U.S. over the period of 1970 to 2000. [35]

In a more recent study, Lovering et al. take a broader view of the nuclear cost history
by investigating trends through 2015 across seven countries that account for 58% of global
reactors. They find that nuclear technology does not have a specific inherent cost trend and
caution against using learning rates to predict future costs without incorporating the large
variance in trends across countries and time. [72]

For the purposes of this study, the criteria listed in Table 3.7 will be used to determine
if nuclear is the most appropriate analog for DAC. If deemed most appropriate, this would
indicate that DAC may not be an appropriate technology to use learning or improvement
rate analysis for.
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Factor Category Impact Source

Construction and
operation complexity Device

The large-scale and inherent
complexity of the facilities limit
incremental small learnings
through experience

[35]

Lack of standard-
ization in reactor
design

Production

No historical standardized de-
sign for reactors until South
Korea in 1989, which showed a
positive learning rate through
2008

[72]

Increasing environ-
mental and safety
regulations

Adoption
Increased safety standards and
system complexity as experience
accumulates and incidents occur

[35]
[72]

Table 3.7: Summarized table of nuclear power plant characteristics that contributed to
negative learning rates
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Chapter 4

Results

4.1 DAC Analog Analysis

Using the tables created in Section 3.2.4, each potential analog’s key drivers are compared
against the four direct air capture methods using the following criteria. Each is based on
the author’s judgment from what has been read across the literature for each DAC method:

• F: Focus - Alignment with this factor is a focus for this DAC method. It is mentioned
regularly by academic articles and company websites in this domain.

• O: Opportunity - There is an opportunity for this DAC method to align with this
factor based on the characteristics of the method. It is not something regularly men-
tioned by those in the domain at this time, but given the features of the method, a
path to aligning with this factor is reasonably feasible.

• LO: Limited opportunity - There is limited or no opportunity for this DAC method
to align with this factor based on its characteristics.

Table 4.1 summarizes these comparison results. The factors are adjusted from what was
shown in the tables in Section 3.2.4 to have more consistency across analogs. An appropriate
analog is chosen for each method based on its current and future potential alignment with
each factor. Each method’s column of results is bolded in the area of the table associated with
this chosen analog. S-DAC, ESA-DAC, and m-DAC align best with solar, while L-
DAC pairs best with natural gas power plants based on the criteria evaluated. Based
on these results, solar is used as the analog for S-DAC, and natural gas plants are used as
the analog for L-DAC for all single-factor LR and IR analyses.

There may be some factors that are listed for one technology in the table that would
actually be applicable to another. For example, wind energy also has niche markets that
likely supported its cost declines, but it was not cited in the literature as being a driver for
cost reductions. The table only includes what could be found for each technology specifically
with regard to driving cost reduction.

Figure 4.1 shows the single-factor learning rate for all of the analogs investigated for both
L-DAC and S-DAC for reference to demonstrate the full range of these energy technology
learning curves on each method. The curve associated with the chosen analog for each DAC
method is boxed in yellow within the legend.
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Table 4.1: Summary of full analog analysis for DAC

Factor Category S-
DAC

L-
DAC

ESA-
DAC

m-
DAC

Solar

Strong link to scientific
phenomenon

Device O O O O

Early convergence on domi-
nant design

Device O O O O

Development into a standard-
ized product

Device O LO O O

Openness to technology
spillovers

Device F O F F

Massive units of production Production F LO F F

Automated production
suitability

Production O LO O O

Tolerance for design
compromise

Production O O O O

Relatively low entry cost to
production market

Production O O O O

Flexibility of a modular
design

Adoption F LO F F

Appealing to the public Adoption F O F F

Geographically mobile
components

Adoption F LO F F

Niche markets independent of
policy

External
Support

F F F F

Public policy support External
Support

F F F F

Wind

Improved technology Device O O O O
Increase in size for economies
of scale

Device O F O LO

High capital-to-opex ratio Device LO LO LO LO
Reduction in cost of technol-
ogy financing

Adoption O O O O

Large units of production Production F LO F F
Public policy support External

Support
F F F F

Continued on next page
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Table 4.1: Summary of full analog analysis for DAC (Continued)

Natural
Gas Plants

Complex systems with indi-
vidualized project cost

Device LO O LO LO

Standardization of compo-
nents for plants

Device F O F F

Derived from a combination
of mature technologies

Device LO F LO O

Relatively low capital cost
compared to other options

Device O F O O

Hydropower

Long plant lifetime Device LO LO LO LO
Site limited technology Device LO LO LO LO
Large variety of plant sizes in
use (not unit scalable)

Device/
Production

LO O LO LO

Mature technology Adoption LO LO LO LO
Government ownership Adoption LO LO LO LO

Nuclear

Construction and operation
complexity

Device LO LO LO LO

Increasing environmental and
safety regulations

Adoption O O O O

Lack of standardization in
reactors

Production LO O LO LO

Figure 4.1: Comparison of cost reduction estimates using single-factor learning rates across
all analogs considered for S-DAC and L-DAC (excluding nuclear)
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4.2 DAC Cost Reduction Rate Analysis

All plots in this section follow consistent formatting as follows:

• Green coloring - Indicates S-DAC cost curve

• Blue coloring - Indicates L-DAC cost curve

• Circle markers - Indicates learning rate utilized for analysis

• Triangle markers - Indicates improvement rate utilized for analysis

• Solid markers - Indicates single-factor analysis

• Empty markers - Indicates component-based analysis

• 45Q Threshold - Indicates the $165/tonCO2 threshold at which the cost of DAC
reaches the U.S. government tax credit for DACCS (assuming cost of compression,
transport, and storage is on average $15/tonCO2 [80])

4.2.1 Single-Factor Analysis Results

Figure 4.2 shows the projected DAC costs for S-DAC and L-DAC relative to each other and
to the 45Q reference point using single-factor learning and improvement rates. The learning
and improvement rate curves follow similar trends for both approaches until around 2030
when they start to diverge. Only the improvement rate curves reach the 45Q threshold by
2050 for each DAC method. L-DAC reaches the threshold in 2034, while S-DAC reaches it
six years later. The learning rate curves are much shallower after the 2030 diversion point,
with S-DAC hovering around $300/tonCO2 beyond 2040 and L-DAC flattening to about
$200/tonCO2.

4.2.2 Component-Based Analysis Results

The results from the component learning and improvement rate analyses can be seen in
Figure 4.3. Figures 4.4 and 4.5 show the cost breakdown across the years of study at a
component level for the learning rate curves as reference for how these curves were built.
For the full breakdown of the component-level analysis and how these curves were created,
see Appendix A.

Much like the single-factor analysis, the improvement and learning rate curves follow
similar trends for a few years before diverging. However, the point of divergence is 3-4
years earlier than with the single-factor rate estimates. Again, only the improvement rate
curves reach the 45Q threshold. Here, L-DAC reaches the threshold about a year later than
predicted using single-factor rates, while S-DAC reaches it at about the same time. The
declines for the learning rate curves using component analysis are overall more shallow than
the single-factor, particularly for L-DAC.
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Figure 4.2: Comparison of cost reduction estimates using single-factor learning rates versus
improvement rates for S-DAC and L-DAC

Figure 4.3: Comparison of cost reduction estimates using component learning rates versus
improvement rates for S-DAC and L-DAC
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Figure 4.4: Cost breakdown by components for S-DAC learning rate component analysis

Figure 4.5: Cost breakdown by components for L-DAC learning rate component analysis
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4.2.3 Base Results Comparison by DAC Method

This section shows the same information as Sections 4.2.1 and 4.2.2, just in an alternate
view that enables a better comparison of cost reduction using base case assumptions by
DAC method. Figure 4.6 shows the results for S-DAC, and Figure 4.7 shows the same for
L-DAC. Table 4.2 shows the year each curve crosses $200/tonCO2 and the 45Q threshold for
all curves investigated in the base case.

Viewing the information in this way emphasizes the alignment of all estimation ap-
proaches for the first several years. It also emphasizes that in most cases, the single-factor
approach is more optimistic than the component-based approach. The exception to this
is the improvement rate analyses for S-DAC. Here, the component analysis shows a faster
decline than the single-factor approach. This difference in behavior will be discussed further
in Chapter 5.

S-DAC L-DAC
Scenario Approach $200/tCO2 45Q Threshold $200/tCO2 45Q Threshold

One-Factor LR - - 2041 -
Component LR - - - -
One-Factor IR 2039 2041 2032 2034
Component IR 2038 2040 2033 2037

Table 4.2: Summary of base cost reduction results, showing when $200/tCO2 and 45Q
threshold are reached

Figure 4.6: Comparison of cost reduction estimates for S-DAC using base case assumptions
across all analysis approaches
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Figure 4.7: Comparison of cost reduction estimates for L-DAC using base case assumptions
across all analysis approaches

4.3 Sensitivities

Two overarching sensitivity sets of cases were investigated. The first uses the alternate
DAC scale-up scenarios introduced in Section 3.2.2, showing how these alternate growth
rates impact the timing of reaching the 45Q threshold introduced in Section 4.2. The second
explores how varying the learning and improvement rate ranges beyond the base assumptions
impacts this timing, as there is variability in the literature regarding the most appropriate
rate to use for each analog.

4.3.1 Sensitivity to DAC Scale-Up Scenarios

This set of sensitivity cases helps demonstrate the cost curve response to varying the DAC
scale-up rate for the experience curve analyses due to the high uncertainty of the scale-up
rate. Figure 4.8 shows the results for S-DAC and Figure 4.9 for L-DAC. Both are shown at
5-year increments for readability.

Within these sensitivity cases, Base is the only case that does not reach $200/tonCO2

by 2050. Base and the IEA WEO STEPS case are the only cases that don’t reach the 45Q
threshold by this time. The Solar Scale-Up case shows a very rapid decline compared to the
other cases, reaching the 45Q threshold sometime between 2030 and 2035. The remaining
cases reach the threshold ranging from 2039 to 2050.

L-DAC shows a similar story but varies in a few key places. First, its Natural Gas Scale-
Up case is the most conservative case in the set, ending nowhere near the 45Q threshold by
2050. Other than Base and NG Scale-Up, all sensitivities reach the 45Q threshold by 2050,
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Figure 4.8: Impact of alternate S-DAC experience growth rates on cost decline compared to
base single-factor learning rate result

with most reaching it by 2040. By 2050, all cases other than NG Scale-Up are in the range
of $100/tonCO2-$200/tonCO2.

4.3.2 Sensitivity to Learning and Improvement Rate Ranges

This sensitivity assessment helps illustrate the variability of outcomes depending on the
analog learning and improvement rates used from the literature. Figure 4.10 shows the
results for S-DAC and Figure 4.11 for L-DAC. Table 4.3 shows the range of rates used for
each analysis.

The range of learning and improvement rates seen in the literature is broad, and therefore
the results of this sensitivity assessment are wide. For both DAC methods, improvement
rates continue to show much steeper declines than learning rates on both ends of the range.
The High IR cases are both well below $50/tonCO2 by 2050. Beyond those, only Base IR
and the High LR cases dip below the 45Q threshold for S-DAC. For L-DAC, in addition to
those cases, the Low IR case also reaches the 45Q threshold by 2050.

Analog Approach Average Range SourceLow High

Solar LR 23% 15% 35% [89]
IR 9% 4% 14% [5]

Natural Gas Plant LR 14% 10% 24% [89]
IR 7% 3% 13% [95]

Table 4.3: Range of learning and improvement rates used for sensitivity analysis
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Figure 4.9: Impact of alternate L-DAC experience growth rates on cost decline compared to
base single-factor learning rate result

4.3.3 Summary

Table 4.5 summarizes the timing for reaching the key thresholds for each method across all
scenarios considered. Finally, Figures 4.12 and 4.13 are summary plots that show the range
of outcomes for both DAC methods.

S-DAC exhibits a 76% variance to the single-factor base case for the scale-up rate sen-
sitivities. The variance is much higher for the analog rate sensitivities at 132%. Given the
unreliability of IR calculations over this length of time, these were removed from the set
resulting in a variance of 90% for the analog rate sensitivities. Similarly, the analog scale-up
case can be removed from the scale-up sensitivity set as an extreme outlier, resulting in a
variance of 35%.

Variance to the base case is generally less high for L-DAC than for S-DAC. Compared
directly without removing any cases, the scale-up sensitivity set shows a variance of 89% and
the analog rate set shows a variance of 105%. Once corrected for the concerns discussed in
the S-DAC section, the scale-up sensitivity set shows a variance of 26% and the analog rate
set 53%. This is summarized in Table 4.4.

Overall, both DAC methods are more sensitive to the analog rate used than to the scale-
up rate. S-DAC is more sensitive to both scale-up rate and analog rate than L-DAC, which
would be expected given its steeper declines.
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Figure 4.10: Impact of varying S-DAC analog (solar) learning and improvement rates across
range from literature

Figure 4.11: Impact of varying L-DAC analog (natural gas plants) learning and improvement
rates across range from literature
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S-DAC L-DAC
Scale-up Analog rate Scale-up Analog rate

Sensitivity to baseline 76% 132% 89% 105%
Sensitivity with outliers removed 35% 90% 26% 53%

Table 4.4: Variance of sensitivity sets to single-factor base case

Figure 4.12: Summary plot showing the range of sensitivity to scale-up rate for both DAC
methods

Figure 4.13: Summary plot showing the range of sensitivity to analog rate utilized for both
DAC methods
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S-DAC L-DAC
Scenario Approach $200/tCO2 45Q Threshold $200/tCO2 45Q Threshold

Base One-Factor LR - - 2041 -
Base Component LR - - - -
Base One-Factor IR 2039 2041 2032 2034
Base Component IR 2038 2040 2033 2037
Analog Scale-Up LR 2032 2034 - -
IEA All Projects LR 2041 - 2029 2036
IPCC AR6 LR 2037 2039 2033 2035
IEA WEO STEPS LR 2050 - 2037 2046
IEA WEO NZE LR 2045 - 2032 2040
Base Low LR LR - - - -
Base Low IR IR - - 2041 2048
Base High LR LR 2039 2044 2029 2033
Base High iR IR 2034 2035 2038 2030

Table 4.5: Summary of all cost reduction results, including sensitivities
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Chapter 5

Discussion of Results

This chapter discusses the results of the analysis and the key findings in the context of the
research questions from Section 1.3:

1. The IPCC estimates needing 2.8 (0.5-11 range) GtCO2/yr of non-conventional carbon
removal by 2050, but current removal rates are well below this. If DAC adoption
and cost reduction behave similarly to solar PV or other analogous technologies, what
contribution can it realistically expect to make to the CO2 removal portfolio?

(a) How might scale-up rate and cost reduction vary by DAC method?

(b) What does the literature identify as the key drivers for analogous technology
learning and improvement, and how do those compare to the various DAC meth-
ods?

(c) What role are the public and private sectors currently playing in advancing the
DAC market, and how does this compare to analogs?

2. Based on the answers to Question 1, what actions could be taken in the near term
regarding DAC by governments, DAC providers, and DAC purchasers to help accelerate
the reduction of DAC costs?

5.1 Cost Reduction Analysis

The results in Section 4.2 and 4.3 help shed light on scale-up rate and cost reduction variances
across DAC methods from Research Question 1a. As shown in the results, the rate of cost
reductions varied drastically across DAC methods. This is expected given the difference
in analogs used for the learning and improvement rates. It emphasizes the importance
of carefully considering which DAC method is being investigated when using technological
change analysis. Ideally, these analyses would focus on either S-DAC or L-DAC (or some
other specific method once these reach the commercialization phase), but if an industry-wide
analysis is undergone, careful consideration should be given to the appropriate learning or
improvement rate to choose.

In Section 4.2, it was noted that using this baseline scale-up rate for the learning curves
did not result in reaching the 45Q threshold across DAC methods. This suggests that if
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projects are not accelerated beyond the rate of scale-up projected by the IEA’s Advanced
Development scenario, DAC may struggle to reach a price that would be fully offset by
current U.S. government tax credits by 2050, regardless of method. This is not inherently
surprising, as it was noted when choosing this scale-up estimate as the baseline that it
was fairly conservative. However, it does indicate that even if DAC does not scale up as
quickly as often forecasted, it may still come down the cost curve far enough to compete
with hard-to-abate emission mitigation options by 2050 if the cost of those mitigations is
above $300/tonCO2.

The sensitivities investigated with alternate scale-up rates shed light on potentially less
pessimistic cost reduction outcomes compared to the baseline. Almost all of these sensitivities
across DAC methods reach $200/tonCO2 by 2050. This makes sense since three out of five
of the sensitivities are goal-derived forecasts of what will be needed rather than projections
of what projects are actually in the queue. However, the IEA full project queue shows costs
at or below the 45Q threshold for both DAC methods by 2050, indicating that if projects
proceed as projected, costs may be in range for full tax credit offset in the U.S. by midcentury.
It is also worth noting that the IEA WEO STEPS scenario also dips below $200/tonCO2

for both methods by this date, so if countries stick to their commitments, the cost could be
reasonably competitive with other CDR and mitigation options by 2050.

In Section 4.3.3, it is noted that both DAC methods investigated were more sensitive
to the analog rate used than to the scale-up rates. The range of learning rates across
the literature for both methods was fairly wide to begin with, so this is not necessarily an
unexpected result. It emphasizes the importance of choosing the appropriate analog as a first
step for any analysis using learning rates, then the importance of selecting the appropriate
learning rate for that analog from the literature. This would be especially important for
technologies using a higher learning rate, like S-DAC, since the impacts of this choice are
amplified at higher decline rates.

While the DAC methods were more sensitive to the analog rate use, there was also
significant sensitivity to the scale-up rates. The base scale-up rate was chosen since it had
the highest level of confidence compared to the other options, but given the high level of
sensitivity to the scale-up rates, the results of the study would likely look quite different with
a different base scale-up rate. If DAC can scale closer to any of the sensitivity rates based on
projections or goal-derived, there is a much higher likelihood of reaching the $200/tonCO2

and 45Q thresholds before mid-century. It is worth noting that the compounding impact
of an alternate scale-up rate alongside an alternate learning rate for the analogs was not
considered for this analysis.

Given the high levels of sensitivity for both DAC methods across the sensitivity cases
investigated, it is worth considering what additional data might help narrow these ranges.
Higher confidence projections will likely become available for scale-up rate once the first
commercial L-DAC plant begins operating in 2024. The IEA is tracking announced project
capacities expected, but this is a space that perhaps an organization like the DAC Coalition
could follow at a more granular level, perhaps by DAC method, to help understand this
for future studies. The range of learning rates for each analog across the literature could
potentially be narrowed by looking for outliers in the range and understanding if they are
appropriate to include or not. Much of this range narrowing would be accomplished by
focusing a study directly on this for each analog.
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Within the scale-up rate sensitivity cases, the analog scale-up scenarios stand out as clear
outliers. The solar scale-up scenario for S-DAC shows a drastic reduction in costs, while the
natural gas scale-up scenario for L-DAC shows hardly any cost reduction over the 25-year
period. The extreme results from both of these cases call into question their validity for use
in the analysis.

In general, the improvement rate analyses result in much lower costs by 2050 compared
to the learning rate analyses. As discussed in Section 2.3, these two technological change
approaches are equivalent when the scale-up rate for a technology experiences exponential
growth. Since that is not the case for the baseline scale-up rate used, it follows that the two
approaches would experience different cost reduction rates. Based on the study from Nagy
et al. comparing across approaches, the learning rate analyses would provide a higher level
of confidence for a 25-year study such as this [79].

Overall, the analysis supports the hypothesis that there is value in considering each
method of DAC separately for both choosing the analogs used in the analog analysis and
for the cost reduction analysis itself. The large variance reported in the literature for the
initial costs of each DAC method further supports considering the two separately. To address
the specific research question, scale-up may overall occur at a similar rate for S-DAC and
L-DAC, but the cost reduction pathways were found to vary drastically across the two DAC
methods.

5.1.1 S-DAC

Despite initial costs that are almost double the initial estimates for L-DAC, the focus on
modularity and scalability for S-DAC results in rapid cost reductions. This rapid decline
leads to potentially similar costs between the two DAC methods by 2050, assuming similar
scale-up rates.

Because of the high initial costs for S-DAC, this DAC method relies on behaving similarly
to solar PV in its technological change process to reach costs that are competitive with L-
DAC. If S-DAC is unable to follow the scalability path of solar PV and instead finds itself
closer to a different analog, such as its second closest analog, wind energy, it may be difficult
to reach competitive cost thresholds. Several of the items listed as opportunities, or "O",
in Table 4.1 highlight these risks. If S-DAC is unable to achieve the production economies
of scale and automation that were so critical to solar PV cost reductions, it may find itself
more similar to wind energy as an analog. This scenario could be caused by a lack of
standardization of the product for installation, labor training, and integration purposes or if
the domain does not on a dominant design to make it worth creating these large production
facilities. If this were to occur, cost reductions may look more similar to the Low LR Analog
Rate sensitivity case since the 15% LR it used is close to the 12% LR of wind energy from
the literature.

The range of 2050 cost results for the scale-up sensitivities, excluding the solar scale-up
rate, of about $100-$300/tonCO2 is very consistent with the range estimated by Fuss et al.
for nth plants costs [31]. This provides confidence in the results of the analysis.
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5.1.2 L-DAC

Since it starts at a much lower initial cost than S-DAC, L-DAC is less dependent on learning-
by-doing for reaching competitive cost thresholds. The focus of this method is more on
economies of scale rather than learning-by-doing, which explains the lower initial cost and
slower learning rate. This is very consistent with its analog, the natural gas power plant.

There is a key concern with these results to keep top of mind, however. Since actual
commercial costs are not yet available, the average cost across several sources has been used
for the analysis, as described in Section 3.2.1. If actual costs end up being much higher than
this average, this DAC method may struggle to reach a competitive cost by mid-century.
This is a real concern since, as discussed in Section 2.3.1, the pre-learning phase for new
technologies often has escalating prices before learning begins.

5.2 Implications of Architectural Decisions on Cost Re-
duction Behavior

The combination of findings from Section 3.2.4 and the results in Section 4.1 help answer
Research Question 1b. Section 3.2.4 provides a direct answer to the question of what are the
key drivers for technological change of analogous technologies, while Section 4.1 addresses
how those analogs compare to DAC methods. The answers to these questions can help
provide insight into the impacts of early architectural decisions across the DAC methods to
how each may see cost reductions over time.

The analog analysis from Section 4.1 showed that S-DAC, m-DAC, and ESA-DAC are all
on a very different trajectory from an analog perspective compared to L-DAC. While solar
had many drivers for its scale-up and cost reduction path identified, the following are three
specific to design choices made by the companies developing it. Shown alongside each are
the associated factors from Table 3.3 that were enabled by the decision:

• Standardization - Early convergence on dominant design; development into a stan-
dardized product; massive units of manufacturing production; automated production
suitability

• Modularity - Openness to technology spillovers; flexibility of modular design; geograph-
ically mobile components

• Design compromise - Tolerance for design compromise

Standardization and convergence on a common design is an area of opportunity for S-
DAC over the next several years. These can enable the massive units of manufacturing
production and automation that were so beneficial to solar PV cost reductions. However, S-
DAC has a multitude of designs across companies currently, which cannot be manufactured
at a large scale. As certain designs emerge as successes within the S-DAC industry, quick
convergence on a design may help drive costs down at an industry level. As pilot designs
have not yet emerged for m-DAC and ESA-DAC, this is less immediately important for their
consideration, but it is something to keep in mind if these methods mature.
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Modularity is a design choice that is referenced regularly by S-DAC and ESA-DAC and
has been mentioned for m-DAC. This is the characteristic most associated with quick learn-
ing for this technology. The openness to knowledge spillovers from other technologies and
flexibility of modular design for learning with each iteration is of particular focus. Compa-
nies also seem to have a focus on keeping components easy to ship for global mobility, like
Climeworks’ design to have six of their modular units fit into one shipping container [84].

Tolerance for design compromise was one opportunity that was not seen in the literature
and across company websites for S-DAC providers. Depending on the needs of the storage
method used by the provider, there may be an opportunity to adjust designs for the S-DAC
system in the future to allow for this if it helps reduce costs. This may also be something to
consider in the development of either of the two less mature methods.

The factors driving natural gas plant cost trends in the literature can also provide insights
for L-DAC plant design, showing where providers could alter the early design and project
planning to potentially see higher learning and improvement rates than seen by natural gas
plants. The companies pursuing this method are focused on economies of scale for CO2

removal by building large continuously running DAC plants. However, the standardization
of components within the plants and standardization of the design of the plants could help
see the manufacturing economy of scale that was noted as a key driver for solar PV cost
reductions for components within the plants. A focus on systems engineering in the plant
design stage could also help avoid unnecessary complexities with such a large system.

The factors across the technologies studied for the analog analysis are a combination
of direct drivers that could be explicitly modeled and qualitative arguments that would be
difficult to prove with a model, particularly in the case of solar PV. This makes comparing
how well-aligned the DAC methods align with their analog on particular factors difficult.
For example, time to converge on a dominant design is something that could be put into
a model and compared across technologies, but "openness to technology spillovers" would
be difficult to assign an actual metric to. Because of this, the analog analysis itself is quite
qualitative and based on consistent themes for technologies more than numerical evaluation.
A study focused on a more numerical evaluation could be pursued by assigning metrics to
each factor to try and estimate how each compares across technologies, but it may be unable
to incorporate some of these more qualitative factors that were impactful to a technology
like solar PV.

Many of the factors within the table are assumed to be independent since they are listed
as independent factors but are, in fact, potentially quite intertwined. For example, early
convergence on a dominant design in solar PV made developing standards across products
much simpler. It also helped drastically with massive units of production, which made it
worth the time it would take to invest in automating that same production. Policy support
in the U.S. through R&D and public procurement carried solar production for several years
until policies changed, at which point the niche market in Japan picked up the development
of the product until policy in Germany drove huge manufacturing growth. It is the connected
system of all of these factors that enabled the technology to scale as it did, rather than each
item independently. [82]

This interconnectedness of factors is especially true with solar PV but is also true for
the other analogs considered. For example, an increase in the size of windmills to allow
for economies of scale drives capital-to-opex ratios higher than they would otherwise be.
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Because hydropower is site limited based on existing bodies of water, it drives plant sizes
to vary significantly in size to match the resource at each site. It is important for DAC
providers to keep these interconnections in mind when developing the product rather than
just focusing on one or two factors to try and mimic.

One key takeaway from the analog study is the misalignment of L-DAC with solar as
an analog at a high level. While it could take learnings from solar PV’s cost reduction
path to improve beyond natural gas learning rates, it is not a suitable overall analog. The
DAC industry as a whole did not have a common analog applicable to all methods due
to the very different paths the two mature methods are intentionally pursuing. The less
mature methods still have time for architectural decision changes as they approach pilot and
commercial phases of development if they see that one pathway is more successful or more
aligned with their goals.

5.3 Public and Private Sector Influence

While the estimations of cost reductions for DAC are important for understanding the future
of the technology, it is also important to consider how these scale-up and cost reduction
predictions interact with the larger DAC market ecosystem. The current involvement of the
public and private sectors in the DAC market is introduced in Section 2.2.4. This section
will provide extra discussion relevant to the results that together work to answer Research
Question 1c.

Over the last three years, governments across the world have become more active in
carbon removal support and direct air capture, as described in Section 2.2.4. Policies that
mimic some that were particularly influential for solar have started to emerge. Nemet iden-
tifies early-stage procurement in the U.S. from the U.S. Block Buy program in the 1970s and
1980s as one of the key catalysts in developing the manufacturing and production processes
that were instrumental to solar PV’s scale-up and cost reductions [82]. While no direct
procurement policies are currently in place for DAC, many of the competition and prizes for
funding in place in the U.S. today could have similar effects on DAC, particularly the DAC
hub program.

The private sector is also playing a particularly active role in the DAC ecosystem despite
the very high costs associated with carbon removal using DAC available today. As discussed
in Section 2.2.4, there is a significant amount of investment in the technology directly, both
through advance market commitments and through advance purchases of carbon removal
by a variety of companies across a spectrum of industries and sizes. Motivations for these
purchases are not well documented, but potential motivations can be identified. Many
companies have goals of reaching net zero emissions by a certain date and may want to start
building relationships with CDR providers that have proven, durable, measurable techniques
for removal, as referenced by Stripe [85] and Microsoft [18] in their Climeworks press releases.
As several of the companies making these early investments are tech companies, part of
the motivation may also come from branding as being forward-thinking, technology-focused
companies, which aligns well with the DAC technology.

DAC with utilization is also providing a connection between DAC consumers and DAC
providers at present. While not discussed heavily in this thesis, these niche applications of
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DAC technology for the creation of products beyond carbon removal help to lower the overall
cost of DAC processes until DAC carbon removal as a service is more accessible to a larger
group of consumers. This is consistent with what was seen in the scale-up and cost-reduction
path of solar PV, where niche applications were found for a product due to its scalability
and flexibility until the ultimate goal could be reached.

5.4 Acceleration Considerations for Key Stakeholders

Learnings from Sections 5.1 and 5.2 can be combined to help address Research Question
2. Table 4.1 shows a number of opportunities for each DAC method to align closer with
a desired analog cost reduction behavior, indicated in the table with a yellow box and the
letter "O". Many of these are architectural decisions as discussed in Section 5.2, but others
can be controlled beyond these initial product design choices by various stakeholders in the
DAC ecosystem.

5.4.1 DAC Providers

Many of the options available to the DAC companies regarding the product they are pursuing
are specific to early design choices discussed in Section 5.2. However, there are additional
actions DAC providers can consider pursuing to accelerate momentum toward cost reduc-
tions.

One of these actions is community engagement, both in the local areas companies plan
to operate in and in the larger political systems of countries where they operate. Concerns
could arise within communities locally when DAC plants are being planned for an area
including but not limited to low levels of CO2 on ecosystems near the facilities, water usage
by the facility depending on the DAC method used by the plant, or pipelines associated with
transporting the captured CO2 to storage locations. By listening to community concerns
and needs early, DAC providers can integrate them into project designs early on. Expanding
general awareness and understanding of the technology and its risks can help build trust and
relationships within the community. Smith et al. found in their review of public perceptions
of CDR that general awareness is low and awareness of novel techniques like DAC is even
lower [96], providing an opportunity for the industry to educate the public. This action would
support the "appealing to the public" factor described in the solar PV cost reduction drivers
table and would benefit any DAC method, regardless of if it was found to be analogous to
solar PV. For concerns like low levels of CO2 on the surrounding area, DAC providers could
work with universities or third parties in advance to study these impacts if limited research
is available.

Another action that could be taken by DAC providers is early collaboration across com-
panies to find opportunities for standardization of system components. Despite the lack of
convergence on a common design, there may be similar parts or inputs across technologies
that could allow for early acceleration of manufacturing scaling. The sorbent for S-DAC, in
particular, makes up a significant portion of the system cost. If more providers use a com-
mon sorbent, economies of scale in manufacturing that material could be very impactful.
Further, this could be an area to look for opportunities for small efficiency losses that lead
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to high-cost reductions, perhaps in the purity or performance expectations of the sorbent.
For example, if the sorbent could be produced at much lower costs by lowering its life ex-
pectations, the additional cost from buying it more frequently could be offset by the overall
lower cost, especially since this could then drive larger economies of scale in its production.

While they are not directly DAC providers, organizations like the DAC coalition could
play an important role in driving some of these behaviors within the DAC provider commu-
nity. They could work to organize all of the players to find these opportunities for cross-
company alignment on a sorbent or acceptable efficiency-cost tradeoffs. They could also
organize studies to better understand the impacts of pursuing these types of ideas, whether
with universities or third-party contractors, without bias to any one DAC method. Par-
ticipation of DAC providers in industry-wide conferences like the DAC Summit can enable
knowledge transfer and relationship building within the community as well.

5.4.2 DAC Buyers

Companies and individuals within the private sector may have more influence in the scale-
up of these DAC methods than one would initially think. As discussed in Section 5.3,
many companies are taking an active role early on in the DAC market. As motivations for
participating in the market may vary across company strategies, desired outcomes may vary
as well.

Regardless of the motivation behind investing in DAC at a high cost, there are some
actions that make sense for buyers to consider across the board. One such action is to focus
on purchases with companies that can provide a clear roadmap of how their DAC method
will be lowered to achieve more accessible costs long-term. Frontier is a good example of a
purchaser with this behavior, so it is apparent to any company hoping to sell carbon removal
exactly what requirements must be met [28]. This can drive DAC supplier behavior to create
clear plans for how their method will reduce costs over time.

5.4.3 Governments and Policymakers

There is a large amount of literature available proposing actions governments should take to
address climate change, ranging from the commonly suggested global carbon tax to detailed
local-level policies. This level of policy analysis is outside the scope of this thesis. However,
there are a couple of policy suggestions that are supported by the analysis completed.

One action the public sector could take to accelerate the scale-up and cost reduction of
DAC specifically is carbon removal procurement based on the example of solar PV. This
would directly influence the scale-up of the technology by ensuring demand within a given
time period, budget, or capacity allocation. The value of this action is dependent on the
continuity of policy, however, which can create a risk to companies that may have stranded
assets if the political atmosphere changes.

Another concern with this approach is that a policy like this inherently "picks favorites",
which can lead to poor overall market outcomes. If the policy was expanded to include all
CDR techniques, DAC and other emerging novel CDR techniques may no longer compete
on a cost basis [47]. With that in mind, one impactful near-term action policymakers could
take is to work with experts at an international level to develop robust MRV and accounting
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standards for use across CDR techniques, as recommended by Smith et al. in the 2023 State
of CDR report [96]. Development of these standards may be less susceptible to political
discontinuities.

The main levers the U.S. government is currently taking toward direct air capture are
competitive funding programs and subsidies through the 45Q tax credit. The competitive
funding programs include both the DAC Hubs program and the DAC Prize discussed in
Section 2.2.4. Given DAC’s current immaturity, these programs could be a useful way to
spur innovation across methods and provide young companies with the funds to advance
their systems. By creating four full regional hubs, the government is assisting in creating the
infrastructure associated with DAC at a large scale, which might be difficult for startups to
accomplish on their own at the scale needed. This is a challenge that an analog like solar PV
didn’t face since the main infrastructure it needed to tie into was the power grid. Through
these massive projects, supply chain systems may emerge that could drive down production
costs across DAC methods if the development of the hubs is planned with this in mind.

What the competitive programs lack, however, is the full power of procurement policies
that guarantee a market for the technology after the competition ends. If these programs
accelerate enough scale-up to bring the DAC methods down the cost curve close enough to the
45Q tax credit, the LCFS trading credits, or a combination of the two, these may be enough
to sustain the market alongside private purchases. It also inherently creates competition
amongst DAC providers, which could lead to less knowledge sharing across companies and
potentially impede technological learning at a domain level. Given the urgent need for
cost reductions, though, this innovation-stimulating approach could be a useful policy lever
overall.

5.5 Generalization of Results

This study has been specifically designed for DAC. However, there are some takeaways
that could be useful for future studies. One such finding is the importance of considering if
multiple methods under the same generalization merit separate analyses when using learning
or improvement curves, as found for S-DAC and L-DAC for DAC technology. Another is the
value in comparing across multiple analysis approaches when using learning or improvement
curves. Cross-comparison can provide additional confidence in the results as inputs often
come from a larger variety of sources.

In comparison to other studies focused on the eventual cost of DAC, the cost ranges found
for S-DAC and L-DAC in 2050 are within the range seen in the literature (see Section 2.2.5.
Across the learning rate analyses (excluding the analog scale-up scenarios), this study found
a range of about $100-$400/tonCO2 for S-DAC and a range of $100-$220/tonCO2 for L-DAC.
A much wider range was seen for both methods using improvement rates, but given the 25-
year timeframe, improvement rate analysis results are less reliable in 2050. The National
Academies of Sciences, Engineering, and Medicine report a range of $89-$407/tonCO2 net
for S-DAC and $156-$506/tonCO2 for L-DAC [80].

One reason for the difference in L-DAC ranges between that study and this is their
inclusion of a case where hydrogen is used for thermal energy and another where coal is the
electricity source, which increases the high-end estimate from $357/tonCO2 to $506/tonCO2.
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The range is still on average higher for L-DAC, though, more in line with the sensitivity that
considered L-DAC scale-up to be in line with natural gas scale-up, which predicted a 2050
cost of $279/tonCO2. The analog scale-up sensitivity cases were deemed too extreme and
removed from the range, but perhaps in the case of L-DAC at least they should be considered.

5.6 Limitations of This Study

Certain limitations should be considered when reviewing this analysis.
As discussed in Section 2.3.1, many experts note that one-factor learning rate analyses are

potentially an oversimplification and do not take into account the underlying drivers of cost
reductions. This analysis makes heavy use of one-factor learning rates, particularly in the
sensitivities considered. There was an attempt to address this by including the decomposition
analyses. However, many of the same analogs were used at the component level as the one-
factor level due to data availability. A future improvement could be expanding the component
analyses to include sensitivities if enough reliable analog data could be gathered.

To build on that, ideally, a full analog study would have been completed for each com-
ponent of the decomposition analysis. However, this was unrealistic, given time constraints
and data availability. This could be another future improvement to the study.

Other limitations involve simplifications that were made on inputs for the analysis. One
such shortcoming is that compression, transportation, and storage costs are assumed to be
fixed at $15/tonCO2. Given the level of uncertainty for these costs, the timing of meeting the
cost thresholds discussed in this thesis could be impacted. It has also been noted by experts
that the sequestration portion of this process, in particular, could become a bottleneck for
CCUS and DAC deployment due to predicted slow improvement rates [95], which has not
been accounted for in this study.

One final caveat for this study is regarding cost versus price. This has already been
discussed in Section 3.2.1 but is worth reiterating. Initial costs for S-DAC are truly initial
prices since the carbon removal price from Stripe’s purchase is the reference point. From a
cost-to-operate perspective, the cost thresholds may be reached faster than indicated in the
results since some margin is likely included in this initial price.
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Chapter 6

Conclusions and Future Work

This study demonstrates the value of considering the different DAC methods separately when
considering initial and eventual cost estimates. It begins by describing why carbon removal
and direct air capture are important in the efforts to limit climate change and ground the
study with research questions of interest in the Introduction chapter. The Literature Review
provides relevant context for CDR, DAC, and technological change theory. The framework
and inputs for the analysis are laid out in the Method and Framework chapter and results
are displayed in the following chapter. Finally, these results are discussed and the research
questions are examined for insights from the study in the Discussion chapter. This chapter
will provide conclusions for the analysis and outline opportunities for future work.

This study found a range of about $100-$400/tonCO2 for S-DAC and $100-$220/tonCO2

for L-DAC using learning curves across a variety of scenarios. This range is within the ranges
seen across the literature. It further supports the growing body of work that shows DAC is
capable of reaching costs that would compete with other CDR techniques and hard-to-abate
mitigation costs.

Through a comprehensive exploration of outcomes using both single-factor and component-
based approaches for learning and improvement curves, a deeper understanding of the poten-
tial range of cost reductions by 2050 emerges, surpassing the insights gained from a singular
approach. Learning curve results were deemed the most reliable among these approaches
for the 25-year window studied, but consistency across the learning and improvement rate
analyses in the early time periods of the analysis supports the findings of Nagy et al. in
their study comparing the two approaches [79]. Limitations to the approaches used do exist,
however, and should be considered.

This study can be a building block for future work in this field. Once the less mature DAC
methods reach the pilot and commercialization stage, the analog assessment from this study
can help build learning or improvement rate analyses. Further, a patent analysis specifically
for DAC could be performed to see how improvement rate predictions at an industry level
compare to the S-DAC and L-DAC predictions. Once actual the first commercial L-DAC
plant comes online, it would also be prudent to rerun the L-DAC portion of the cost reduction
analysis with actual initial L-DAC costs rather than detailed estimates.

The final takeaway from this study to reiterate is the suite of actions described for the
major stakeholders in the DAC ecosystem to help accelerate scale-up and cost reduction.
Policymakers can provide impact by developing standards for MRV and accounting in CDR.
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The private sector can set clear requirements for carbon removal purchases, focused on
purchasing proven, durable, measurable techniques that, in the case of DAC, can provide
clear paths for cost reduction to more accessible levels. Finally, DAC providers themselves
can focus on early design choices that enable cost reductions and work together towards
economies of scale in manufacturing.

To meet the Paris Temperature Goals, the world will need a suite of CDR techniques
available by mid-century. Direct air capture is a promising option, if it can scale and reduce
costs at rates fast enough to meet demand. This thesis suggests this is achievable with both
mature DAC methods and provides additional levers stakeholders can utilize to accelerate
this goal.
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Appendix A

Decomposition Analysis Details

This appendix includes the component-level cost breakdown for the curves found in Section
4.2.2. The LR & IR used for each component and the corresponding analog can be found in
Tables A.1 and A.2. Components marked as "Minimal" in the analog column indicate that
minimal learning is expected due to this already being a mature component. Analogs are
based on the author’s best judgment from available data.

The resulting cost breakdown for each DAC method by approach can be found in Figures
A.1 and A.2 for S-DAC and Figures A.3 and A.4 for L-DAC.

LR Analysis IR Analysis
Component Analog LR Source Analog IR Source

CAPEX

Adsorbent Solar 23% [89] Adsorption IR 12% [95]
Blower Minimal 1% - Minimal 1% -
Vacuum Pump Minimal 1% - Minimal 1% -
Condenser Minimal 1% - Minimal 1% -
Contactor Solar 23% [89] Solar 9% [5]

OPEX
Adsorption Solar 23% [89] Adsorption IR 12% [95]
Steam Minimal 1% - Minimal 1% -
Vacuum Pump Minimal 1% - Minimal 1% -

Offset Generated CO2 Solar 23% [89] IGCC+CCS 7% [95]

Table A.1: Learning and improvement rates used for S-DAC component analysis
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Figure A.1: Cost breakdown at the component level for S-DAC learning rate component
analysis

Figure A.2: Cost breakdown at the component level for S-DAC improvement rate component
analysis
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LR Analysis IR Analysis
Component Analog LR Source Analog IR Source

CAPEX

Contactor Array NG (CAPEX) 10% [90] NGCC 7% [5]
ASU&C NG (CAPEX) 10% [90] NGCC 7% [5]
SCC NG (CAPEX) 10% [90] NGCC 7% [5]
OF Calciner NG (CAPEX) 10% [90] NGCC 7% [5]

OPEX

Maintenance NG (OPEX) 6% [90] Minimal 1% -
Labor Minimal 1% - Minimal 1% -
Makeup & WR Minimal 1% - Minimal 1% -
Electricity Minimal 1% - Minimal 1% -
Thermal Energy NG (OPEX) 6% [90] NGCC 8% -

Offset Generated CO2 NG (OPEX) 6% [90] IGCC+CCS 7% [95]

Table A.2: Learning and improvement rates used for L-DAC component analysis

Figure A.3: Cost breakdown at the component level for L-DAC learning rate component
analysis
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Figure A.4: Cost breakdown at the component level for L-DAC improvement rate component
analysis
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