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Abstract

In the past few years, the satellite communications land-
scape has undergone significant transformations, which
increase the operational complexity of satellite systems.
On one hand, the development of modern highly flexible
payloads that provide the ability to adapt satellites’ re-
sources to specific needs, together with reduced launch
and manufacturing costs, provide satellite operators with
increased capacity. On the other hand, new market seg-
ments such as in-flight connectivity have made the over-
all demand for satellite communications increase. Fur-
thermore, demand has also changed its behavior, being
more variable and unpredictable. Consequently, these
new mobility segments entail new complexities due to
their dynamic nature and uncertain behavior.

The objective of this paper is to build upon current
methods to address the satellite routing problem, which
consists of mapping users to satellites, in the presence
of mobile users with uncertain behavior. While previous
literature addresses these type of users from the perspec-
tive of the frequency assignment (i.e., the assignment of
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frequency spectrum to users), previous routing literature
does not fully address these type of users. First, we for-
mulate the problem, including the characteristics of new
mobility segments. Then, we propose strategies in two
stages: pre-operations, involving an initial plan based
on users’ trajectories and schedule estimates using prob-
abilistic constraints, and real-time adjustments during
operations based on updated information.

Our approach, tested with Eurocontrol flight data, al-
lows us to regulate the degree of conservativeness and
control a trade-off between drop time and capacity, hav-
ing a maximum reduction on the former of 11.68% but
an increase on the latter by 11.85%. When combining
satellite routing with frequency assignment strategies, we
successfully serve 99.7% of the users, compared to just
84.4% users served in the baseline, with a minor increase
in power consumption in the satellite constellation.
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1 Introduction

1.1 Motivation

Currently, we are witnessing the growth of the satellite
communications market, which is expected to grow from
81.26B USD in 2022 to 211.34B USD in 2032 [1]. Con-
stellations are growing in size, which Starlink exemplifies
with its constellation of 4,519 satellites in orbit as of July
2023 [2], having approval to deploy 12,000 satellites, and
a planned possible extension to 42,000 [3]. In general, it
is estimated that 100,000 satellites will be launched in
the coming decade [4]. Furthermore, recent new com-
munication technologies are boosting the capabilities of

modern satellite systems. Technologies such as phased
arrays, reconfigurable antennas, and other improvements
in payload technologies such as digital processors or mul-
tiport amplifiers, have permitted to shift from static,
wide area coverage beams to dynamic, steerable, spot
beams, which allow for a better distribution of power
and facilitate frequency reuse based on specific needs
[5], [6], [7]. Thanks to the growth in satellite constella-
tions, together with these new communication technolo-
gies, modern satellite communication systems are able
to reach unprecedented levels of capacity, with global
High Throughput Satellites capacity supply expected to
exceed 60Tbps in the next five years [8].

Furthermore, new market segments, such as in-flight
connectivity and ship broadband internet, are increas-
ing the complexity of the environment that communica-
tion systems deal with. For instance, in-flight connectiv-
ity is experiencing substantial growth, with most flight
passengers using connectivity services on board when
available—around 79% according to a survey to 11,000
people by Inmarsat [9]. In addition, 21,000 planes are ex-
pected to be equipped with in-flight connectivity by 2030
[10]. In a similar way, ships also commonly use satel-
lite internet [11], and shipping companies are increasing
their satellite internet access for members of the crew as
a strategy to retain talent [12].

Mobile users add an additional layer of complexity
when it comes to managing resources efficiently, due to
their dynamic and uncertain behavior. Flights, for in-
stance, can be delayed, which have the potential to en-
tirely undermine the operators predictions during the
operational phase. If we want to address these users
effectively, it is necessary to consider their mobile char-
acteristics when allocating resources, as their uncertainty
can lead to a substantial loss [13].

While some aspects of this problem have already been
addressed, such as the allocation of frequency to mo-
bile users [13], other decisions under uncertainty remain
to be studied, as current tools do not fully leverage the
users’ information in those cases. In this paper, we ad-
dress the challenges that mobile users pose to the satel-
lite routing problem, which consists of assigning users
to satellites, in the context of satellite communications
by adapting an existing methodology for fixed users to
the mobile users case, and introducing probabilistic con-
straints to increase the robustness of the solution against
uncertainty. In combination with this, we propose a real-
time strategy to deal with emergency cases characterized
by high delays and trajectory changes.

1.2 Literature review

The satellite routing problem involves deciding the map-
ping between users and satellites. When mobile users
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Figure 1: Operations vs Pre-operations solvers. The pre-operations solver takes available information about
the users and the system before operations and generates a plan. This plan is used to operate the system in real
time with the operations solver, which reallocates users that deviate from the pre-operations plan.

are introduced, the problem becomes more complex for
two reasons:

1. Because users are moving, so mappings cannot be
static.

2. Because of uncertainty in the users’ positions and
times due to delays and/or trajectory changes.

The satellite routing problem has been addressed in
different contexts throughout the literature. The most
common one is task scheduling, where a task with a spe-
cific duration is assigned to a satellite for a particular
time.

In [14], Barbulescu et al. examine communication
scheduling between ground stations and satellites, em-
ploying a heuristic, local search, and genetic algorithm.
Users specify an antenna at a particular ground station,
a duration, and a time window. Solutions are repre-
sented as permutations of integers 1 to N (total requests).
However, the study overlooks scenarios involving long-
duration tasks requiring multiple satellite routing, as
seen in satellite internet for flights. Additionally, they
did not address flight-type users, as those were not their
main use case.

In [15], Xhafa et al. propose four objectives for
their task scheduling model: maximizing successful com-
munications by scheduling links during ground station-
satellite visibility, minimizing communication clashes be-
tween satellites and ground stations, maximizing space-
craft communication time, and maximizing ground sta-
tion usage. However, some objectives are unsuitable for
satellite communication services such as satellite broad-
band internet. For example, scheduling tasks within user
visibility should be a constraint, as infeasible schedules
need to be avoided, and ground stations should have
communications the whole time they need to. Further-
more, uncertainty is not considered in their problem def-
inition.

Other satellite routing approaches use different infor-
mation and objectives. In [16], Zhu et al. use past
scheduling information to predict future scheduling and
model the process with game theory. Their online algo-
rithm shows that the congestion of the system is reduced.

However, the scheduling prediction algorithm proposed
bases its decisions on the similarity in measurement re-
ports from past user groups with the current group that
needs handover. It does not consider other information,
such as the users’ positions and times.

In [17], Li et al. use an online scheduling algorithm to
schedule tasks in real-time in the context of an Earth Ob-
servation satellite. The scheduling algorithm proposed
includes two policies, one when-to-schedule policy and
one how-to-schedule policy, used to classify tasks by nor-
mal or urgent tasks. However, the authors study schedul-
ing strategies in real-time and onboard, where computa-
tional resources are scarce and there are tight time con-
straints. Solutions that leverage information that might
be available before operations to build pre-operations
schedules have to be studied. In this paper, we use this
information to build schedules before operations that are
robust against uncertainty.

In [18], Barritt et al. introduce the concept of Tem-
porospatial Software Defined Networking as an exten-
sion of Software Defined Networking (SDN) technolo-
gies, which decouple control and data services from the
network infrastructure. The authors suggest that Tem-
porospatial SDNs can be applied, amongst others, to
compute feasible scheduling plans, as they have access
to the time-dependent elements of the system and their
mobility. In [19], Barritt et al. compare a traditional dy-
namic routing protocol to a Temporospatial SDN-based
routing protocol. The results show how their proposed
approach reduces significantly the number of packets
lost. However, possible uncertainty in the users is not
considered, and scheduling is not performed based on
optimization methods, such as the one used in this pa-
per.

In [20], Pachler et al. studied satellite routing for
satellite communications as a task scheduling problem.
The authors aim at minimizing resource consumption on
the satellite constellation. Resource consumption is mea-
sured as the amount of different user pairs that use the
same satellite at any point in time, and interference be-
tween pairs of users. This is minimized by distributing
the load of the constellation across satellites and reduc-
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ing interference. However, the paper solves the problem
only for fixed users, which assumes that are always con-
nected to the system and requiring service. The mobile
characteristics and uncertainty of users such as planes
are not addressed. This paper aims to follow the research
direction of this previous paper, and expand upon their
proposed approach and results to also address mobile
users and spatiotemporal uncertainty.

Metaheuristics have proven to be successful in similar
problems. Specifically, the particle swarm optimization
(PSO) has shown good results in solving the fixed user
satellite routing case [20] by Pachler et al. It has also
been used in other problems related to satellites, such as
power and bandwidth allocation [21] by Pachler et al.,
refuel scheduling in geosynchronous constellations [22]
by Zhou et al., and for routing in pico satellite networks,
[23] by Fdhila et al. It has also been successful in similar
scheduling problems, such as satellite remote sensing [24]
by Wu et al., satellite task scheduling [25] by Fan et
al., task scheduling in cargo ports [26] by Tang et al.,
task scheduling in cloud computing [27] by Awad et al.,
and general task scheduling in combination with other
algorithms [28] by Lin et al.

Overall, the satellite routing problem has been gener-
ally studied as a task scheduling problem. To the best of
the authors’ knowledge, there is limited work that con-
siders the spatiotemporal characteristics of mobile users
within the context of the satellite routing problem, in-
cluding the uncertainty that users such as flights pose.
The purpose of this paper is to bridge this gap by ad-
dressing the satellite routing problem considering mobile
users and their uncertainty in time and space.

1.3 Paper objectives

This paper pursues the following objectives:

1. Develop a formulation and methodology that cap-
tures mobile users’ behavior effectively in the con-
text of satellite routing, and proposing an approach,
including its formulation, that solves the satellite
routing problem including the identified behaviors.

2. Assess the performance of the proposed approach by
performing experiments where we generate solutions
and test them against real world scenarios. We also
test the proposed satellite routing approach in com-
bination with the frequency assignment methodol-
ogy and strategies described in [13]. The results
from the experiments aim to show that our approach
reaches robust solutions against users’ uncertainty
and captures their mobile nature effectively.

1.4 Paper organization

The remainder of the paper is organized as follows: in
Section 2, the satellite routing problem is formally de-
fined and formulated; in Section 3, the particle swarm
optimization implementation used to solve the optimiza-
tion problem is explained; in Section 5, the experiments
performed are explained and the metrics used to eval-
uate performance, and their results are shown; and in
Section 7, conclusions from the experiments are stated.

2 Problem formulation

2.1 Definition

The satellite routing problem consists of matching users
to satellites for every point in time, or equivalently,
deciding when to handover each user from satellite to
satellite, thus generating a scheduling plan. Operators
are interested in handover schedules that minimize re-
source consumption (e.g., bandwidth) and minimize ser-
vice drop time. In order to reduce resource usage, dis-
tributing users among satellites has proven to lead to
increased capacity [20].

Our approach is to solve the problem in two steps, as
proposed in [29] by Guerster et al.: using pre-operations
and operations solvers, as shown in Figure 1. On one
hand, the pre-operations solver serves the purpose of
generating a pre-operations plan based on the users’ es-
timates, and it focuses on determining the best alloca-
tion possible. In this paper, the users’ estimates are
based on their planned trajectories, planned schedules,
and it includes available statistics on delays and trajec-
tory changes based on past data. Since this step occurs
offline, the solution space can be explored without ac-
counting for time constraints. On the other hand, the
operations solver serves the purpose of reallocating users
who might deviate from the pre-operations plan in real-
time, based on the real-time information from the users’
trajectories and schedules.

In the remainder of this section, we first focus on the
pre-operations phase, presenting our approach to devel-
oping the pre-operations plan. Then, we turn to the
operations phase, presenting our strategy to reallocate
users that deviate from the pre-operations plan.

2.2 Problem description

We assume that we have a set of Nsats satellites
{S1, S2..., SNsats

} and a set of Nusers mobile users. In
this work, mobile users could be any user for which
planned trajectory, activation/deactivation times and
schedules are known in the pre-operations phase. We
also assume the following:
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1. Users need to be served continuously from the mo-
ment they activate until they no longer require ser-
vice.

2. Each user can only be served by a single satellite at
each point in time.

Examples of this kind of users could be flights, boats,
or trains. We assume that the constellation consists of
Nsats homogeneously distributed in longitude in an equa-
torial orbit. The satellites are numbered sequentially,
where the first satellite is irrelevant. During the pre-
operations phase, we assume that we have the informa-
tion for every user’s planned trajectory, which consists
of temporal points with their respective geographical po-
sitions. From this information, and simulating the con-
stellation, we can then extract the initial and final times
in which each user is seen by each satellite (i.e., when the
elevation angle between satellite Sk and user l is equal
to a minimum elevation angle configurable as a param-
eter in the analysis). This is the visibility window, and
it is denoted by the times tSk

start,l, t
Sk

end,l. A user can be
served by a specific satellite within the visibility window,
which is intrinsic to the problem, as a user needs to be
visible to the satellite to connect to it. We assume that
a satellite can serve multiple users at the same time. To
define when each user performs a handover from satellite
to satellite, we can also equivalently define the serving
window, which is the time window for which each user is
connected to each satellite. In Figure 2, both the serving
window and the visibility window for a mobile user are
represented. Then, the satellite routing problem consists
of deciding when to place the serving window for each
satellite and user within the visibility windows. During
the time that the users are active, we assume that they
require service continuously. Then, the serving windows
need to be placed so that the users are connected to a
satellite at any time while active. We assume that users
can only be served by a specific satellite once per orbital
period. Furthermore, the planning horizon of the algo-
rithm is implicit, as we plan for users between two time
instances t1 and t2.

Notably, in the pre-operations solver, the visibility
windows are based on forecasted or planned trajectories.
Due to external events, such as bad weather conditions
producing delays or traffic producing trajectory changes,
real trajectories might deviate from the planned ones in
time or space. This uncertainty affects visibility win-
dows, as different routes or additional delays not consid-
ered in the plan will translate in different tSk

start,l, t
Sk

end,l.

Then, all these deviations are encoded as ∆Sk

l,1 and ∆Sk

l,2 ,
for the start and end times, respectively. These variables
are modeled as random variables in the pre-operations
solver, and will be assumed known during the opera-
tions phase. An example of how visibility windows can

Figure 2: Visibility and serving windows. In the
Figure, a user is scheduled to each satellite during the
time window represented in blue. The visibility windows
for satellite Sk are indicated by tSk

start and tSk

end.

change due to delays and how that can affect the planned
serving windows is shown in Figure 3. As represented in
the figure, previously valid serving windows can be in-
validated by delays, as the planned satellite is no longer
visible when the user requests service.

2.3 Formulation

2.3.1 Fixed users formulation

The formulation presented in this paper is a modified
version of the fixed users’ case formulation presented in
[20] by Pachler et al. The formulation presented in that
work is the following:

min
∑

l,p,l ̸=p

yl,pcl,p

yl,p =

 1 if

{
tl < tp + TS

tp < tl + TS

0 otherwise

tstart,l < tl < tend,l

(1)

The objective of this formulation is to assign an ini-
tial serving time tl to each user l that meets visibility
constraints (i.e., that tl is inside the visibility window
defined by tstart,l and tend,l) while minimizing resource
consumption. Since users are fixed, the serving window
was chosen to have a fixed duration TS , due to the char-
acteristics of the problem. Reducing resource consump-
tion involved minimizing user overlap yl,p, where l and
p indicate a pair of users, with tl the initial serving time
of user l, and tp the initial serving time of user p. User
pairs overlap when they are connected to the same satel-
lite at some point, with the overlap cost cl,p. The overlap
cost is determined by their demand and by their prox-
imity. Beams that have a higher demand will use more
frequency channels, which result in additional overhead
to the satellite. Furthermore, two beams that are geo-
graphically sufficiently close that they may interfere have
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Figure 3: Visibility windows deviations from the
forecast. Changes in visibility windows are indicated
in red. Three cases are depicted: Without using PC, the
plan is infeasible, even if there is a small change. With
PC, we can capture this change. If the change is big, PC
will not capture it completely.

additional cost. Two beams are considered to interfere if
the angle between the centers of their respective beams is
smaller than a certain threshold. The specific calculation
and values can be found in [20].

In the fixed users’ paper, the authors leveraged the
characteristics of equatorial orbits together with fixed
users. In those conditions, the visibility windows and
overlapping conditions are periodic, and they are the
same between satellites but delayed, which makes it pos-
sible to solve the problem for a single satellite and prop-
agate the solution to the other satellites.

For the mobile case, the visibility windows and over-
lapping conditions change for each satellite. In this pa-
per, we adapted the previous formulation to this new
case.

The goal of the satellite routing problem is to assign a
valid handover time, i.e., that fulfills visibility and con-
tinuous service constraints, and that is as optimal and
robust as possible, i.e., minimizes resource consumption
and is robust against deviations from the pre-operations
information. Continuous service constraints are satis-
fied in the fixed users’ case because of the definition of
the problem in 1, as the problem is solved with a fixed
window TS and for a single satellite, and the solution
is propagated to the other satellites with delay TS . In
the mobile users’ case, the decision variable is the final
serving time tSk

f,l for each pair satellite-user in the constel-
lation. We could add an additional variable for each pair
satellite-user, but as we want to enforce continuous ser-
vice, it is not necessary. This is different from the fixed
user’s case, where the decision variable was the initial
serving time tl for each user l and a reference satellite,
with a fixed service window TS . As the visibility win-
dows change from satellite to satellite, a decision variable
is needed for each satellite in the constellation. Also, the
solution cannot be propagated with a delay through the
satellites, as happened in the original formulation.

2.3.2 Mobile users formulation

Similarly to the fixed users’ case, the final serving time
has to fulfill the visibility window constraints, which
means that it has to be allocated within the times that
the user is visible to the satellite (Equation 2). Visibility
windows for mobile users are different from the ones for
fixed users, as they are not periodic, and change from
satellite to satellite. We also need to ensure that the
user will be continuously served, that is, satellite k + 1
is visible when satellite k performs handover (Equation
3).

tSk

start,l +∆Sk

l,1 < tSk

f,l < tSk

end,l +∆Sk

l,2 (2)

max(t
Sk+1

start,l +∆
Sk+1

l,1 , t
Sk−1

f,l ) ≤ tSk

f,l (3)
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Furthermore, we slightly changed the definition of
overlapping. The definition of overlapping is now per
satellite since the serving window depends on the satel-
lite, and thus there is different overlapping in different
satellites:

ySk

l,p =

 1 if

{
t
Sk−1

f,l < tSk

f,p

t
Sk−1

f,p < tSk

f,l

0 otherwise

(4)

As in Equation 1, there is overlap between beams l
and p if their serving windows overlap on satellite Sk.
In this case, the serving window does not have a fixed
duration, so they are defined by two variables. Because
of continuous service constraints, this window is defined,

for user l, by the times t
Sk−1

f,l and tSk

f,l.
Similarly, the objective function minimizes overlap-

ping over all satellites:∑
Sk

∑
l,p,l ̸=p

ySk

l,pcl,p (5)

where cl,p is a penalization based on the demand and
proximity of the two users.

Then, the complete formulation of the satellite routing
problem is:

min
∑
Sk

∑
l,p,l ̸=p

ySk

l,pcl,p

ySk

l,p =

 1 if

{
t
Sk−1

f,l < tSk

f,p

t
Sk−1

f,p < tSk

f,l

0 otherwise

tSk

start,l +∆Sk

l,1 < tSk

f,l < tSk

end,l +∆Sk

l,2

max(t
Sk+1

start,l +∆
Sk+1

l,1 , t
Sk−1

f,l ) ≤ tSk

f,l

(6)

2.4 Including uncertainty

In the pre-operations phase, operators do not possess
the real-time information from the user. In this Section,
we adapt the formulation considering uncertainty in the
information we possess in this phase.

Previous to operations, ∆Sk

l,1 and ∆Sk

l,2 are modeled
as random variables, and their distribution is estimated
from data. In order to make a more robust plan and be
able to account for possible user deviations, we transform
visibility windows into probabilistic constraints, which
are the expression of the conditions of the optimization
problem so that the conditions hold with probability
p. This transformation effectively shortens the visibil-
ity windows on both ends. We capture the variability
in the visibility windows by accounting for the effect of
possible delays and trajectory changes that will produce
∆Sk

l,1 and ∆Sk

l,2 with probability p, according to historical

data. Intuitively, shortening in both ends of the visibility
windows is the worst-case scenario in terms of feasibility
during the pre-operations optimization, as it can invali-
date the plan for the time the scheduled serving window
is out of the visibility window. Other changes in the
visibility window do not change feasibility.

To do that, we introduce the following equations:

P (∆Sk

l,1 < tSk

f,l − tSk

start,l) ≥ p ⇒∫ t
Sk
f,l−t

Sk
start,l

−T1

f
∆

Sk
l,1

(∆) d∆ ≥ p (7)

P (∆Sk

l,2 > tSk

f,l − tSk

end,l) ≥ p ⇒∫ T2

t
Sk
f,l−t

Sk
end

f
∆

Sk
l,2

(∆) d∆ ≥ p (8)

where P (.) is a probability of an event occurring and
f
∆

Sk
l,i

(∆) is the probability density function (pdf) of vari-

able ∆Sk

l,i . The probability density function is not ex-
plicit, it is extracted from the data available in the Eu-
rocontrol dataset [30]. T1 and T2 are in theory ∞, as the
delays and trajectory deviations can have any value. In
practice, we selected T1 = orbital period and T2 =orbital
period. Furthermore, we have modeled ∆Sk

l,2 so that it is
conditioned to the specific visibility window length so
that it cannot have invalid values (i.e., values greater
than the length of the window). We can control the ro-
bustness of the optimization against uncertainty with the
parameter p. By choosing a greater tSk

f,l, probability p is
higher in Equation 7, but is smaller in Equation 8. The
objective is to have an equilibrium. This is equivalent to
finding the delta terms and shortening the visibility win-
dows with those values. The optimization is performed
with these shortened visibility windows. For that, we fix
a value for p, and find the estimated visibility windows
that fulfill that probability.

In a practical setting, there are visibility windows
where if we apply probabilistic constraints for very con-
servative values of p (for example, p = 0.99), the short-

ening of the windows will make t
Sk+1

start,l > tSk

end,l, and then
continuous service for the users cannot be fulfilled. In
those cases, we reduce the probability p of those visibil-
ity windows to the maximum one that fulfills Equation

3, i.e., when the estimated t
Sk+1

start,l and tSk

end,l are, at least,
equal. We look for the probability p that fulfills that
condition iteratively, reducing p by steps until we find
the value of p for which both times are, at least, equal:

1. First, reduce probability p by a certain step (in our
case, 0.001) and recompute the estimated times.

2. Repeat the procedure until the estimated t
Sk+1

start,l and

tSk

end,l are equal.
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3 Pre-operations approach with
Particle Swarm Optimization

This section presents the particle swarm optimization al-
gorithm, used to solve the scheduling optimization prob-
lem. First, an introduction to the algorithm and exam-
ples of its application to different problems are presented.
Secondly, the general characteristics of the algorithm are
explained. Finally, the implementation used in this pa-
per is described.

3.1 Introduction

In scenarios involving hundreds or thousands of users,
satellite routing becomes a complex, high-dimensional
problem that cannot be solved optimally in a compu-
tationally feasible time [31, 32]. In order to solve the
problem, we use Particle Swarm Optimization (PSO).
First introduced in 1995 by Kennedy et al. in [33], PSO
is an iterative algorithm inspired by the social behavior
of bird flocks. The goal of the algorithm is to find a good
enough solution in a reasonable computational time, and
it does not guarantee optimality. It has shown to be suc-
cessful in solving complex problems, and has properties
that makes it suitable for this task, such as a capacity
to get out of local optima [34]. Furthermore, PSO has
shown to be specially suitable for the problem addressed
in this paper, outperforming a Genetic Algorithm and
Cross Entropy method when solving the fixed users case
[20].

3.2 PSO concepts

The PSO algorithm is based on particles, and each par-
ticle has a position and a velocity. For particle i, its
position represents a solution to the problem in the solu-
tion space at each iteration, which we denote by xi,t, and
its velocity represents how the particle’s position evolves
through the iterations of the algorithm, which we denote
by vi,t. Each particle has associated the value from the
objective function of our optimization problem. The so-
lution space is explored by the particles, which move to a
new position in each iteration according to their velocity
vi,t. A group of particles is referred to as swarm, and it
is composed by Npart particles.
In each iteration, the position of the particle xi,t

evolves as:

xi,t = xi,t−1 + vi,t (9)

The velocity evolves as the algorithm runs following
different parameters:

1. Global pull: it represents the attraction that each
particle has towards the best solution found so far

up to iteration t by the swarm. It can be computed
as:

G = αg(xG − xi,t) (10)

where α is a random weight uniformly distributed
over [0,1), g is the weight factor of the global pull,
and xG is the best particle of the swarm.

2. Local pull: it represents the attraction that each
particle has toward its best own solution found up
to iteration t. It can be computed as:

L = βlf (x
L − xi,t) (11)

where β is a random weight uniformly distributed
over [0,1), lf is the weight factor of the local pull,
and xL is the best solution found by the particle
until iteration t.

3. Inertia: it represents the tendency that the particle
has to follow the velocity in the previous iteration
t− 1. It can be computed as:

I = wvi,t−1 (12)

where w is the inertia weight, and vi,t−1 is the ve-
locity in the previous iteration.

Velocity is then computed as:

vi,t = G+ L+ I (13)

The implementation of the Particle Swarm Optimiza-
tion used in this paper has been extracted from [20] with
some modifications. From [20], we have used the concept
of mutation that the authors introduced in the PSO,
where each particle has a certain probability pmut of suf-
fering a mutation of a fraction pmutx of its coordinates.
We have also used a velocity constraint, that limits the
maximum velocity that particles can achieve.

3.3 Adaptive weights

In this paper, we have introduced the use of progres-
sive/variable weights for the optimization algorithm, to
have two different objectives in the optimization process,
one at the beginning of the algorithm, and another one
at the end. The objectives are:

1. Exploration: More weight is given to the local pull
and inertia.

2. Exploitation: More weight is given to the global
pull.

In this paper, a linear schedule with respect to the iter-
ations has been considered. The weights vary according
to the following evolution throughout the iterations:

8



l = (lmin − lmax)
1

Niter
t+ lmax (14)

g = (gmax − gmin)
1

Niter
t+ gmin (15)

w = (wmin − wmax)
1

Niter
t+ wmax (16)

By doing that, we intend to assess a wider variety of
solutions in the exploration phase and then converge to-
wards the best solution in the exploitation phase. The
linear variation of the inertia weight was first introduced
by Shi and Eberhart in [35] and it has already been
widely used in the literature [36], [37]. Furthermore, in
[38], Ratnaweera et al. proposed the use of adaptive ac-
celeration weights by linearly varying them throughout
the iterations.

4 Real-Time formulation and ap-
proach

Once a pre-operations plan has been computed, we can
proceed to the operations phase. However, as mentioned
earlier, the real schedule and trajectories that the users
take might be different from the ones planned and, even
though a robust plan has been generated, there will still
be users that deviate from the plan. A real-time strat-
egy that reallocates those users is presented here. Note
that a user only needs to be reallocated if it deviates
enough from the original plan such that the planned
satellite is no longer visible. In the operations phase, we
also possess the frequency assignment information, i.e.,
the specific frequency in which the users operate, their
bandwidth and power. With that information, we can
also check if there is resource overlapping between users
(i.e., different users using the same resource at the same
time), which would mean that one of the users should be
dropped.

The proposed strategy consists of an heuristic ap-
proach which is ideal for the real time phase, as it can
be executed quickly, differently to approaches such as the
PSO. It consists of the following steps:

1. For each user that needs to be reallocated, we check
which satellites are visible.

2. We start checking, for each satellite in order of the
elevation angle (highest to lowest), if there is a con-
flict in frequency between the user and any other
user served by the satellite. A conflict arises when
different users are using the same frequency at the
same time and they are sufficiently close to interfere,
i.e., the angle between the center of their respective
beams is smaller than a certain threshold. We keep

checking every satellite until we find one in which
the user does not have any frequency conflict.

3. If no feasible satellite is found, we assign the user
to the highest elevation angle satellite in the satel-
lite routing plan and we use frequency reassignment
strategies [13], or the user is dropped.

5 Results

In this Section, the experiments performed are pre-
sented, as well as the metrics used to assess their results.
Three experiments have been performed: first, the pre-
operations satellite routing approach is tested to assess
if it can effectively create robust pre-operations plans.
Next, an analysis of the users who are dropped is con-
ducted to investigate the reasons behind their service
unavailability. Finally, a full simulation with the opera-
tions phase is conducted, and we assess the performance
of the proposed satellite routing approach together with
other strategies from the literature. Throughout the re-
mainder of the paper, we use two baselines that serve as
a comparison to the proposed approaches: 1) We use the
solution to the satellite routing without including uncer-
tainty (i.e., without using probabilistic constraints and
the real-time strategy), solved with the PSO, and 2) We
use the solution to the satellite routing in the case where
there is no uncertainty (i.e., the users’ planned informa-
tion in the pre-operations phase is the real information
in the operations phase).

5.1 Simulation parameters

The satellite constellation used is based on the O3b con-
stellation operated by SES [39]. It consists of Nsats = 10
satellites equally distributed in an equatorial orbit at
8063km of altitude. The users have been extracted from
the Eurocontrol dataset [30], which consists of aerial
users with planned trajectory and time and the real tra-
jectory and times. This dataset is used to character-
ize the distribution of the random variables presented in
Section 2 and to simulate users. For the simulation, we
randomly select a total of Nusers = 2500, and we have
excluded flights that fly above 47º and below −47º of lat-
itude. The month used to extract the users, included in
the Eurocontrol dataset, does not include trans-Pacific
flights. The pool of users from which we select theNusers

users is plotted in Figure 4. The users are extracted from
a single day of the dataset (in our case, day 12/21/2019).
Due to the characteristics of the dataset and the delays’
similarity between days, the results of a single day are
representative of other days. To confirm this, we ran-
domly selected 10 days, computing the probability dis-
tributions of the initial visibility window variations for
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Figure 4: Users pool. From the users plotted,
Nusers = 2500 users are randomly selected for each run
of the experiments.

Table 1: Characteristics of the constellation.
Parameter Symbol Value

Polarization Np 2

Number of frequency reuses Nr 15

Number of channels Nc 200

Number of satellites NS 10

each day, and finally computing the Pearson coefficient
between the estimated probability functions. A mean
Pearson coefficient of 0.9983 and a minimum of 0.9928
has resulted.

The constellation parameters used are summarised in
Table 1.

5.2 Satellite routing

This experiment aims to show how the proposed pre-
operations approach increases the time that users are
served from a scheduling perspective. Results with
global metrics, such as power or users served, are pro-
vided in the next sections, once the frequency assignment
experiment has been solved.

The metrics used in this experiment are the following:

1. Drop time: it is the amount of time that users need
to be dropped because the scheduled serving win-
dows (using the pre-operations plan) partially fall
out of the visibility windows, and hence the user
cannot connect to the satellite as planned during
that time. It is normalized against the total time
that the users require service.

2. Maximum load: it represents the average normal-
ized maximum amount of users connected to a single

Figure 5: Constellation load vs drop time. The
tradeoff between reducing the time that users are out of
plan and the constellation load is plotted for 4 values of
p and the baseline scenario.

satellite. It can be expressed as:

1

|Ts|
∑

∀t∈Ts

maxSk
xSk(t)

xT (t)
(17)

where xSk(t) represents the number of connected
users to satellite Sk at time t, xT (t) represents the
total number of connected users to the system at
time t and Ts is the set of time steps between the
first user requiring service and the last user requiring
service. We aim to minimize this metric.

By using the maximum load metric, we show that sys-
tem capacity is reduced (i.e., there is more overlapping).
With this fact, we can assess the impact on the system
of building a robust plan.

In Figure 5, the results of 10 Monte Carlo simulation
runs for 4 different values of p are presented. Each of
those runs are performed with a different set of random-
ized users. The confidence ellipses are computed with
the method explained in [40]. In Table 2, the numerical
results of the graph are shown. In the figure, we observe
different values for the probability p defined in Section 2
and the drop time and constellation load for each result-
ing schedule. We observe that, for the most conservative
point with p = 0.99, we achieve a reduction in drop
time by 11.68%, but the constellation load increases by
11.85%, compared to the baseline. By introducing un-
certainty considerations in the form of probabilistic con-
straints, we reduce the time that users are out of plan, as
we schedule the users in smaller visibility windows, which
allows us to produce robust schedules against changes in
the visibility windows. However, smaller visibility win-
dows also reduce the flexibility of the system, increasing
the load due to the natural density of the data. Fur-
thermore, we have the ability to control the trade-off by
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Table 2: Results satellite routing. The results of the
satellite routing experiment are presented. The baseline
case corresponds to not using probabilistic constraints.

Strategy p
Drop time Maximum Load

Mean Std. Dev Mean Std. Dev

B Baseline 0.1406 (0.0031) 0.4023 (0.0046)

D1 0.7 0.0400 (0.0021) 0.4395 (0.0058)

D2 0.8 0.0314 (0.0029) 0.4628 (0.0041)

D3 0.9 0.0256 (0.0021) 0.4930 (0.0066)

D4 0.99 0.0238 (0.0020) 0.5208 (0.0063)

tuning p, which allows us to be more or less conservative
in our decisions. From the operator’s view, if reducing
the time that users will not be able to connect to the
pre-operations planned satellite is a priority, we could
argue that the best solution is p = 0.99, as it reduces
the amount of time users experience drop time to almost
2%. However, that comes at the expense of constella-
tion capacity, which is also of importance to operators.
Then, other values of p can be of interest. By tuning p,
operators can find the value that best fits their system
and situation, providing more robustness against uncer-
tainty, or being less robust but with a higher capacity to
better distribute users through the constellation.

5.3 Frequency assignment strategies

In this paper, we assess the performance of the satellite
routing strategies combined with frequency assignment
strategies that address uncertainty. To do that, not only
the satellite routing problem has to be solved, but also
the frequency assignment problem. For that, we use the
solution proposed in [41] by Garau et al., and we use
the strategies presented in [13] by Casadesus et al.. By
solving both problems, we can analyze the effect of com-
bining strategies in both problems together.

From the strategies presented by Casadesus et al., two
have been chosen because of their complementary char-
acteristics to the satellite routing ones:

1. Reserved Spectrum: it is a real-time frequency as-
signment strategy that reserves a portion of the
available spectrum in the pre-operations phase in
order to use it to reassign users that deviate from
the pre-operations frequency plan.

2. Trajectory deviations: it is a pre-operations fre-
quency assignment strategy that considers possible
trajectory deviations in the pre-operations phase to
compute more restrictive constraints.

The different combinations assessed in this paper can
be found in Table 3. All combinations use the PSO im-
plementation presented in Section 3 to solve the satel-
lite routing optimization problem, and the optimization
framework presented in [41] to solve the frequency as-
signment. We have selected the best values of p for
each strategy combination to run the experiments. For
strategies that use probabilistic constraints but do not
use real-time satellite routing, the best value of p was
selected by choosing the best ratio of constellation load
vs drop time fraction. For strategies using both prob-
abilistic constraints and real-time satellite routing, the
best value of p was selected as the value for which strat-
egy E serves a similar amount of users to strategy C, but
minimizing power consumption.

5.4 Dropped users characterization

The purpose of such characterization is to give a bet-
ter insight into the causes of drop time and how our
approach addresses them. In this experiment, we an-
alyze the baseline case, i.e. using neither probabilistic
constraints nor the trajectory deviations strategy in the
pre-operations phase, and not using any real-time strat-
egy in the operations phase. That analysis consists of,
while the system is simulated, counting the number of
users that are dropped (i.e., users that cannot be served)
because of a deviation from the pre-operations plan in
satellite routing and because of a deviation from the pre-
operations plan in frequency assignment.

From the values found in Table 4, we can see that
most of the users are dropped due to satellite routing,
that is, users that deviate from the routing schedule de-
fined before operations. From that, we can conclude that
most of the users’ deviations in trajectory and time are
sufficiently low to increase the time that users are out
of schedule, but not enough to produce new frequency
conflicts between users, which translates into a higher
fraction of the users being dropped because the planned
satellite in the pre-operations phase is not visible to them
in the operations phase as planned. From these results,
we can conclude that addressing uncertainty in the satel-
lite routing stage is of utmost importance, as it accounts
for most of the dropped users.

5.5 Satellite routing + frequency assign-
ment

This experiment aims to show the results of the different
combinations of strategies. Once the frequency assign-
ment has been solved, global metrics such as power and
users served can be used, as we possess all the informa-
tion to compute them. They are used in this experiment
to characterize the improvement in performance, from
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Table 3: Combination of strategies.

Strategy Description Parameters

A No uncertainty -

B No strategies (Baseline) -

C Real-time SR -

D4 PC p = 0.99

E PC + RT SR p = 0.7

F Trajectory deviations + PC γ = p50th , p = 0.9

G PC + Reserved spectrum p = 0.9, xspec = 0.05

H RT SR + Trajectory deviations γ = p50th

I RT SR + Reserved spectrum xspec = 0.05

J PC + RT SR + Trajectory deviations p = 0.7, γ = p50th

K PC+ RT SR + Reserved spectrum p = 0.7, xspec = 0.05

L PC + RT SR + Trajectory deviations + Reserved spectrum p = 0.7, γ = p50th , xspec = 0.05

PC = Probabilistic Constraints, RT SR = Real-time satellite routing

Table 4: Users dropped characterisation. The
percentage of dropped users in the baseline case for each
possible cause is presented.

Cause Value (%)

Total users dropped 15.41

Users dropped due to frequency assignment 1.74

Users dropped due to satellite routing 14.01

the baseline case, when satellite routing and frequency
assignment strategies are combined. In order to do that,
the following metrics are used:

1. Users served: it is the number of users successfully
served normalized against the users that require ser-
vice, and time-averaged.

2. Power consumption: it is the amount of time-
averaged total power consumed across the satel-
lite constellation, normalized against the power con-
sumed by the case without uncertainty, i.e. when
the users do not deviate from the planned trajecto-
ries and times known before operations. The power
is computed as detailed in [13] and [41].

In Figure 6, the results for 10 Monte Carlo simulation
runs of each of the experiments are shown. The 10 runs
are performed for different users, that is, generated with
different random seeds. In Table 5, the numerical results
are presented. The confidence ellipses are computed with
the method explained in [40]. From these results, an in-
teresting outcome is that the satellite routing strategy

Table 5: Results satellite routing + frequency as-
signment. The results of the satellite routing experi-
ment together with frequency assignment are presented.
The combination of strategies can be found in Table 3.

Strategy
Users served Power consumed

Mean Std. Dev Mean Std. Dev

A 1 (0) 1 (0)

B 0.8441 (0.0044) 0.9845 (0.0138)

C 0.9591 (0.0027) 0.9718 (0.0125)

D4 0.9457 (0.0034) 0.9576 (0.0171)

E 0.9560 (0.0038) 0.9516 (0.0106)

F 0.9623 (0.0032) 1.0686 (0.0148)

G 0.9823 (0.0016) 1.0210 (0.0157)

H 0.9713 (0.0028) 1.0690 (0.0170)

I 0.9970 (0.0013) 1.0325 (0.0140)

J 0.9739 (0.0019) 1.0714 (0.0124)

K 0.9969 (0.0008) 1.0244 (0.0110)

L 0.9989 (0.0008) 1.1345 (0.0187)

that serves most users is the real-time satellite routing
strategy. That means if the system has the real-time ca-
pabilities to perform that strategy in a relatively short
time, it is best to use the real-time strategy than its pre-
operations counterpart. However, it is also interesting
to see that using only pre-operations, we also achieve to
increase the users served from the baseline by around
10% while reducing power consumption. It is also im-
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Figure 6: Users served vs power consumed. The
users served and power consumed for every combination
of strategies in Table 3 are plotted.

portant to note that, even though the real-time satellite
routing strategy (strategy C) performs better than the
combination of real-time with probabilistic constraints
satellite routing (strategy E), strategy E consumes less
power. That is because probabilistic constraints sched-
ule the users closer toward the center of the visibility
windows, which means they are closer to the satellite,
thus consuming less power. We can also see that the
best combinations of strategies use the real-time satellite
routing strategy and the reserved spectrum frequency as-
signment strategy. Furthermore, strategies that use the
trajectory deviation strategy use more power.

The strategies that serve most of the users are strate-
gies I, K, and L, serving 99.7%, 99.69%, and 99.89%
users, respectively. However, strategy L consumes more
power, 13.45% more than the case without uncertainty.
There is a trade-off between strategies D4, E, C, G, I,
K, and L. We also observe that the dominated strategies
F, H and J all share the trajectory deviations frequency
strategy. Adding trajectory deviations in combination
with other strategies improves the users served but at
the cost of substantially increasing power consumption.
Overall, from the operator’s view, we could argue that
possibly strategy combinations I and K are the best, as
serve almost all the users, which is the operators’ main
concern, at a low power consumption cost, 3.25% and
2.44% respectively. However, we can see that by just us-
ing the satellite routing pre-operations proposed method,
we can already create a decent plan, increasing the num-
ber of served users by 10.16% from the baseline and re-
ducing power by 2.7%. Furthermore, the operator can
always decide to use another combination of strategies
that uses less power if reducing power is a priority, or
choose to use strategy combination L if serving the most
users possible is a priority and power is not a constraint.

6 Discussion

The problem formulation proposed in this paper fully
captures the mobility characteristics of the users in the
case of constellations with a unique plane, and allows
to generate robust scheduling plans against uncertainty
in position and time. The use of probabilistic con-
straints is general, which means it can be used in any
type of satellite system where the operators possess pre-
operations estimates of the users’ trajectories and sched-
ules, if enough data is possessed regarding the delays
and trajectory deviations, to be able to build the nec-
essary statistics in order to compute the probabilistic
constraints. The proposed formulation could be applied
to other constellations with multiple planes with some
further work. The proposed current method fails with
these types of constellations because of the ordering of
the visibility windows. Further work includes devising
a method that computes a feasible ordering of the vis-
ibility windows, or equivalently, the satellites, which is
needed to generalize the formulation to these cases.

7 Conclusions

In this paper, we have adapted a fixed-user satellite rout-
ing formulation to the dynamic behavior of mobile users,
accounting for the uncertainty that characterizes them.
The satellite routing problem is solved in two instances,
in the pre-operations phase, and in the operations phase.
In the pre-operations phase, to address spatiotemporal
uncertainty, we have proposed a probabilistic constraints
formulation, based on statistical data, and we are able to
generate an optimized robust baseline schedule by using
a particle swarm optimization algorithm, adapted from
previous works, to solve the formulation proposed. In
real-time, we have proposed a heuristic satellite routing
strategy to re-route users that deviate from the baseline
schedule. Then, we have conducted three experiments,
to assess the performance of the pre-operations satellite
routing strategy, to analyze factors that cause dropped
users, and to assess the performance of different com-
binations of satellite routing and frequency assignment
strategies. Our main findings are the following:

1. The results show that the pre-operations satellite
routing strategy effectively reduces drop time, at the
expense of system load. With the formulation pro-
posed, the trade-off between both metrics can be
controlled by tuning p.

2. From our analysis, we can conclude that the satel-
lite routing problem under user uncertainty is the
main cause of drop time when the plan is not ro-
bust, with around 14% of dropped users. That em-
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phasizes the importance of building robust satellite
routing plans.

3. By combining satellite routing and frequency as-
signment strategies, the results show we can serve
around a 99.7% of the users for minimal power cost.
At an extra power cost, we can serve 99.9% of the
users by using all the strategies.

Directions for future research include studying the
satellite routing problem when there are inter-satellite
links, studying the grouping of users in beams when there
are fixed and mobile users under uncertainty, and includ-
ing uncertainty in the users’ demand.
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