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requirements for the degree of
Doctor of Philosophy

Abstract

The objective of this thesis is to provide a method and tool to leverage computational
resources to empower a systems architect to reason about architectural decisions more
comprehensively and effectively compared to traditional approaches. This thesis pro-
vides a computational framework for decision support called the Architecture Decision
Graph framework. It supports human decision-making by providing a methodology
for generating and analyzing architectures as the result of a set of interrelated deci-
sions. ADG’s explicit representation of an interconnected decision problem is a bipar-
tite graph of decision variables, property variables, logical constraints, and property
functions. The Architecture Decision Graph’s framework provide tools for reasoning
about the structure of a decision problem, generating the set of feasible combinations
of decisions, and simulating their outcome. The underlying computational engine
used by ADG is the Object-Process Network (OPN) kernel.

The contribution of this thesis to the field of systems architecting falls into three
areas: First, the thesis contributes the ADG representation of an architectural candi-
date space as a set of interrelated decision variables. Second, the thesis contributes the
ADG framework, which leverages the ADG representation of architecture to transform
an architecting problem into a computational problem. Third, this thesis contributes
decision space viewing tools, which present the potential impact of changes in the
assignments of the decision variables to an architect.

The ADG representation, analysis methodology, and tools are demonstrated with
two applications. The first application is a retrospective study of the architectural
decisions related to the development of the Apollo moon project of the 1960’s. The
second application is a study of decisions in support of NASA’s lunar outpost ar-
chitecting effort. The applications include discussions of the practical considerations
related to the use of ADG as a decision representation method, the efficiency of the
simulation algorithm, and a discussion of the architecting insights that can be drawn
from the results.

Thesis Supervisor: Edward F. Crawley
Title: Ford Professor of Engineering
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1
Introduction

1.1 Overview

The job of a systems architect is to transform a set of needs and goals into an ar-

chitecture for a system. An architecture is a stable, high-level mapping of functions

to forms that embodies the concept for a system [Cra07, Koo05]. An architecture

does not specify a detailed design, it specifies a category of acceptable designs. For

complex systems, the task of architecting is considered challenging because the many-

to-many relationships between products and their contexts often introduce a massive

search space which challenges either humans’ or computers’ abilities to exhaustively

process the candidate space. Solving difficult search problems often depends on using

an effective knowledge representation[BL85]. This thesis argues that a systems archi-

tecture search space can be effectively represented as a set of interconnected decision

variables.

In this thesis, I assert that systems architecting is fundamentally a decision-making

process. For example, consider the process of architecting the Apollo project of the

1960’s. In Figure 1-1, President Kennedy is shown giving his famous May 1961

“Urgent National Needs” speech. In that speech, Kennedy stated that the United

States must send a man to moon and return him safely to the Earth by the end of

the decade in order to achieve the goal of maintaining America’s world leadership

status [Ken61, Wie95, Sea05]. This set of needs and goals was transformed into

an architecture for the system. Systems architects achieved this transformation by

making decisions to reduce the candidate space of architectures. They decided to use

lunar orbit rendezvous as a mission-mode. They decided to use a single, large launch

vehicle. They decided to use a crew of three astronauts. By making these decisions,

the systems architects provided design engineers with a stable category of acceptable
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Figure 1-1: Systems architecting transforms a set of needs and goals into an architecture.
Engineering design transforms an architecture into a detailed design. (source of images:
NASA)

designs that were eventually refined into a single detailed design. The Apollo project

successfully completed its goals with the first successful lunar landing in July 1969

[MC04].

Although systems architecting is essentially a decision-making process, represen-

tations of architecture generally do not make the relationship between architecture

and architectural decisions explicit. In the mathematical sense, explicit is defined

as “having the dependent variable expressed directly in terms of the independent

variables, as y = 3x + 4.” [dic08]. An explicit representation of architecture as

a set of decisions would have architecture as an output of a function of decision

variables. Typical architectural representations of systems, such the Object Process

Methodology (OPM) [Dor02], the Unified Modeling Language (UML) [OMG03], the

Systems Modeling Language (SysML) [Sys06], and the DoD Architecture Framework

(DoDAF) [Dep07] do not have this capability. One representation which has can be

used to represent architecture as an implicit function of decision variables, Object

Process Network (OPN) [Koo05], will be discussed in Section 2.3.4. In OPN, archi-

tectural decision variables are implicitly represented as a procedural branches in a

computational model.

The specific objectives of this research are to develop an explicit representation of

architecture as a set of decisions and show that, through using this representation, an

architect can gain useful insight into the architectural candidate space. This thesis

satisfies these objectives by:

• Introducing Architecture Decision Graph (ADG), an explicit representation of
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architecture as a set of interrelated decisions.

• Providing a framework which uses the knowledge represented in an ADG to

transform an architectural problem into a computational problem.

• Providing a methodology for evaluating the relative degree of potential impact

of decision variables.

The remainder of this introduction is structured as follows: The next two sections

discuss the definitions of the terms “decision”, “decision support”, “systems architec-

ture” and “systems architecting”. Next, the needs of a systems architect are outlined.

The chapter concludes with a synopsis of this thesis.

1.2 Decisions and Decision Support

Various definitions of “decision” can be found in the technical literature. According to

R. Hoffman, the word decide comes from the Sanskrit word khidáti, meaning “to tear”,

the Latin word cædare, meaning “to kill” or “cut down”, and also the Latin word

decædare, which means “to cut through thoroughly”[Hof05]. A contemporary English

definition of the word decision means “the passing of judgment on an issue under

consideration” [ah-04]. A third definition for decision-making written by S. Hannson

is “goal-directed behavior in the presence of options”[Han05]. The key ideas in these

definitions are 1) there exists a controllable situation with multiple alternatives, 2)

a selection (or decision) is made which separates (“tears”) the solution space, and

3) there is some expected benefit that will be achieved by making this decision. In

this thesis, the word decision means a purposeful selection from mutually exclusive

alternatives. The term decision-making is a process which culminates in one or more

decisions.

Decision support is the task of assisting decision-makers in making a decision.

Before computers were widely available, the idea of decision support largely meant

providing a rational1 procedure for arriving at a decision. According to S. Hansson,

formalized methods for decision support can be traced back as far as 1793, when

the French philosopher Condorcet outlined a three-phase decision-making process for

the French Constitution. “Staged” or “phased” decision-making methods were later

1In the context of this thesis, I use the word rational to mean, “having or exercising reason,
sound judgment, or good sense”[ah-04].
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developed by J. Dewey (1910), H. Simon (1960), Witte (1972), and Mintzberg (1976),

among others [Han05, Tan06]. Many of these staged processes can be shown to be

roughly equivalent to Herbert Simon’s four-phase process for decision-making outlined

in “The New Science of Management Decision” [Sim60, Sim77]. Simon’s breakdown,

described below and shown in Figure 1-2, is used as a baseline for this thesis:

1. Intelligence Activity: “Searching the environment for conditions calling for

a decision.”

2. Design Activity: “inventing, developing, and analyzing possible courses of

action.”

3. Choice Activity: “selecting a particular choice.”

4. Review Activity: “assessing past choices.”

Intelligence Design Choice Review

Figure 1-2: H. Simon’s four stages of decision-making.

According to Simon, managers (decision-makers) spend a large fraction of their

resources in the intelligence activity phase, an even greater fraction of their resources

in the design activity phase, and small fractions of their resources in the choice and

review activity phases. This breakdown of resources is pictorially indicated by each

stage’s size in Figure 1-2.

It is important to note that other research has found that the fraction of time

spent in these four phases of decision making can be significantly different, depending

on the situation and total time available. For example, in the case of high-speed

decision-making made by people like military commanders, firefighters, or high-speed

chess players, the time spent in the “design activity” for high-speed decision making

is very short or virtually non-existant. An excellent study of quick decision-making

by people in high-pressure situations with little time to generate alternatives can be

found in Klein’s “Sources of Power” [Kle99]. In these types of situations, decision-

makers tend to draw analogies to previous situations in their experience, and then pick

a solution similar to one that worked before. Since the time scale of these decisions

is typically on the order of minutes, there is little time to allocate for inventing and
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Decisions in Engineering Design Decisions in Systems Architecting

Operations Research Management Science

Figure 1-3: The spectrum of decisions: Programmed vs. Non-programmed decisions.

analyzing alternative courses of action. In the case of systems architecture decision-

making, the focus of this thesis, the time scale is typically on the order of weeks,

months, or years. Therefore, in this thesis, using Herbert Simon’s breakdown of the

allocation of required resources is appropriate.

Simon’s research also makes the complementary observation that there are two

“polar” types of decisions: programmed decisions and non-programmed decisions

(sometimes called “structured” and “unstructured” decision problems by subsequent

authors [TA98].) Examples and characteristics of these two types of decisions are

shown in Figure 1-3.

Programed decisions are “repetitive and routine decisions” where a procedure for

making decisions for this type of problem has been worked out a priori. Examples

of programmed decisions range from simple to very complex. For instance, deciding

how much to tip a waiter, deciding the optimal gains of a rocket control system, and

deciding the routing of all aircraft flying over the United States can all be considered
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programmed decision problems. In all cases, there is a known and defined approach

with which a decision-maker can follow to arrive at a satisfactory choice. Models

exist for the behavior of the problem and the objectives are clearly definable. Note

that classifying a decision as “programmed” does not imply it is an “easy” decision,

it only means that a method to solve it is known and available. The classification

of “programmed” does not quantify the amount of resources necessary to use the

prepared methodology. For many engineering problems, this pre-determined routine

will be difficult to implement or expensive to compute, such as an airline scheduling

problem [BLS98]. According to Simon, programmed decisions are considered to lie in

the domain of Operations Research.

On the other side of the spectrum are non-programmed decisions. These decisions

are novel, ill-structured, and often significantly consequential. An example is the

decision of the mission mode for the 1960’s Apollo mission to land a man on the

moon and return him safely to Earth. This decision was regarded as the most difficult

and consequential of all of the decisions leading to the successful moon landings

[Sea96, Sea05, SKK05]. This problem was extensively studied by NASA and its

contractors for two years before a method [Hou61a] to solve this problem was selected.

According to Simon, non-programmed decisions are generally solved by creativity,

judgement, rules of thumb, and general problem solving methods. Examples are

given in Figure 1-3: deciding if a nation should go to war, deciding market strategy

for new, unproven products, and deciding the mission mode for human Mars missions.

According to Simon, non-programmed decisions are considered to lie in the domain

of Management Science.

Many engineers and system architects may balk at this breakdown of programmed

and non-programmed decisions. In many cases, decisions thought to be non-programmed

become programmed once someone is clever enough to invent a programmed method

to solve that problem. Perhaps a better name for non-programmed decisions is “not-

yet” programmed decisions. In the following abridged list of four examples, engineers

and architects were able to derive a systematic way to program a previously non-

programmed problem:

• Wilcox and Wakayama studied the architectural decision of “how should our

new aircraft be modularized?” for Boeing’s Blended Wing Body concept in

Reference [WW03] using a systematic application of operations research tech-

niques.
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• Simmons, Koo and Crawley systematically studied mission-modes for the hu-

man exploration of the moon and Mars by encoding a motion-language formu-

lation of the problem in Object-Process Networks[SKC05a].

• Fang, Hipel, and Kilgore [FHK93] describe a technique for systematically study-

ing socio-technical-political conflicts using a game theory approach that has

been applied to problems such as ground water contamination disputes [HKLP97]

and negotiating the Kyoto protocol [WHI07].

• Christopher Alexander introduced the concept of “pattern language”[Ale77,

Ale79] as a systematic way to develop civil architectures. The pattern lan-

guage catalogs elements of an architecture as re-usable triples made up of: the

context in which they are relevant, the problem they are trying to solve, and

the solution they provide.

From these examples it is evident that there is sometimes an opportunity to “pro-

gram” a decision problem that was previously thought to be “non-programmed”. In

each case, a systemic way to analyze the problem space was enabled through an effec-

tive representation of the problem. By developing an effective representation, coupled

with a methodology to leverage its information, a system architect can comprehen-

sively and efficiently examine a solution space using rigorous analysis rather than

using heuristics to pre-simplify the space, as suggested by Simon and others [MR02].

1.3 Systems Architecture and Systems Architecting

The term systems architecture is defined by B. Koo as “the stable properties of a

system of interest”[Koo05]. A systems architecture is “stable” in the sense that, at

some particular level of abstraction, the description of the behavioral and structural

properties of the system does not change. E. Crawley defines architecture as “the em-

bodiment of a concept: the allocation of physical/informational function to elements

of form, and the definition of interfaces among the elements and with the surrounding

context”[Cra07].

Systems architecting is the process of creating a systems architecture[CdWE+04,

Rec91, MR02]. A systems architect generally starts with a vague set of needs and

goals and a definition of the context in which the system will operate. This set of

information provides an initial boundary for possible implementations of the system.
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As architecting proceeds two things happen: 1) additional information about the

system and its context is gained and 2) decisions are made about its implementa-

tion. Both types of inputs to the systems architecting process have the possibility

of widening or narrowing the space of possible implementations. For the purposes of

this thesis, I define systems architecting as the process of transforming needs, goals,

and context into a systems architecture, as opposed to engineering design, which is

the process of transforming a system concept into an implementable design.

Figure 1-4: This notional architecture solution space would be changed by a decision
about the systems architecture.

Figure 1-4 is a notional depiction of the idea that the steps of systems architecting

can be characterized by decision-making. The set of all possible systems that could

satisfy the needs and goals in a particular context can be represented by a hyper-space

of discrete points. Each point in this hyper-space represents a feasible system concept

which could satisfy all of the needs and goals to some acceptable extent. In this

hyper-space of system concepts, the feasible solution space is bounded by the needs

and goals, as well as the context in which it operates (this includes considerations

such as obeying the laws of physics). In this example, the solution space is narrowed

after making a decision about decision variable “A”, which could be assigned the

value of either “1” or “2”. The feasible solution space is changed in a different way

by selecting one alternative over the other.

In Systems Architecting, a decision can be thought of as a partitioning and se-

lection operation in the architectural candidate space. When a decision is made the

system architect chooses a part of the solution space that will remain in consideration,

and a part that will be eliminated. In practical terms, the architect reduces the set

of alternative implementations that are acceptable.
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A concrete example of this concept is shown in Figure 1-5. This Object Process

Method (OPM) [Dor02] diagram is a simplified description of a system architecture

for a traveller who wants to go from New York to Los Angeles given constraints on

Time Available, Budget, and Comfort Needs. The architect (possibly the traveller

himself) is presented with a choice between transportation systems, indicated by

the OPM specialization symbol, 4. The specialization symbol indicates that the

transportation system can be specialized to be a Car, Plane, or Train. Each of these

transportation systems has its own associated Speed of Travel, Cost, and Comfort

level.

Car

Plane

Transportation 
System

Speed

Cost

Comfort

Location
New York LA

Traveller

Traveling
Time 

Available

Budget

Comfort
Needs

Train

Constraints

Figure 1-5: A simple architecture for a traveller who desires to go from New York to Los
Angeles. (This diagram is in Object-Process Methodology (OPM) notation [Dor02].)

In a typical large system, decisions are not as simple as the one depicted in Fig-

ure 1-5. Commonly, there are many decisions that are interrelated in unclear ways.

As an illustrative example, consider the extensive research conducted at MIT from

2004 to 2006 on the architecture for implementing the Vision for Space Exploration

(See References [SKC06, SKC05b, CCC06, HWNC05, WHC05a, BAH+05, HWSC06,

WHC05b]). This research illustrates that that the mission-mode decision for human

moon and Mars exploration missions is connected to the launch vehicle decision, the

spacecraft partitioning decision, decisions about the distribution of the NASA work-

force in the next ten years, decisions about who wins subcontractor awards, and

decisions about scientific goals, among others. Another illustrative example is the

systems architecting of a novel arctic oil exploration system[Roz07]. A company aim-

ing to build an arctic oil exploration facility must consider the interactions between

decisions about local and international political strategy, environmental issues, power
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supply & storage, ice protection, and seismic protection.

1.4 Needs of the Architectural Decision-Maker

Systems architecting can be viewed as a decision-making process for non-programmed

decision problems. Therefore, Simon’s stages of the decision-making process also form

the partitions of the basic needs of a systems architecture decision maker: Intelligence,

Design, Choice, and Review. An architectural decision-maker needs effective methods

for each of the four stages of the decision-making process.

For the intelligence activity, a decision maker needs effective methods for iden-

tifying occasions for making a decision and for understanding the value proposition

of the decision-making environment. For the design activity, a decision-maker needs

methods for generating and analyzing feasible sets of alternatives. For the choice ac-

tivity, a decision-maker needs methods for selecting courses of action while taking into

consideration the predicted impact of each generated alternative. Since decisions in

organizations are updated on a continuing basis, there is also a review activity, where

a decision-maker needs methods for assessing past choices and using that information

to revise assumptions and models of the decision problem. In principle, the review

activity could be considered as revision of the intelligence activity.

According to Simon, the most time-consuming activity in decision-making for

non-programmed problems is the design activity. Even if the intelligence, choice,

and review activities have perfect solutions, the design activity is still potentially the

most difficult stage of the decision-making process. Designing and analyzing the set

of feasible alternatives in systems architecting is considered hard because it often

introduces a search space that involves divergent or infinite possibilities. Searching

in a divergent space of possibilities is not only hard for computers, it is also hard for

humans to construct a consistent and stable mental model.

Because the design activity is the most-resource intensive process, the methodol-

ogy in this thesis focuses on the needs of a systems architect in this specific area. The

needs of a systems architect, in terms of design activity, can be broken down into fur-

ther detail. A survey of decision support literature [Pow02, BHW81, TAL05], reveals

that the task of the design activity can be represented as four “layers”: representing,

structuring, simulation, and viewing:

The representing layer includes the methods and tools for representing the problem
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for both the human decision-maker as well as representing the problem using an

encoding that a computer can interpret.

The structuring layer refers to the methods and tools for reasoning about the

structure of the decision problem itself. This includes determining the order that

decisions should be addressed or the degree of connectivity between different decision

variables.

The simulating layer is used to determine which combinations of decisions will

satisfy logical constraints and calculate the properties of predicted decision outcomes

using metrics.

The viewing layer is the methods and tools for presenting decision support infor-

mation derived from the structuring or simulating layers in a human-understandable

format. In some literature, the viewing layer is combined with the representing layer,

since it is another form of representing knowledge.

formally
Representing

knowledge

finding patterns through
Structuring

the representation

finding feasible solutions by 
Simulating

the structured representaion

supporting decisions by
Viewing

the results of structuring and simulating

Figure 1-6: The four layers of design activity needs in support of architectural decision-
making.

These four layers, shown in Figure 1-6, are used throughout this thesis as a way

to modularize the decision support problem.

1.5 Summary and Synopsis

The intent of this thesis is to provide a framework for decision support that satisfies

the representing, structuring, simulation, and viewing needs of an architectural de-
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cision maker. Specifically, the goal of this thesis is to support the “design” activity

phase for “non-programmed” decision problems by providing a decision support fram-

work. The four examples presented in Section 1.2 show that by providing a framework

for decision support in systems architecting problems, the non-programmed decision

problems can move to the left on the “spectrum” and become more “programmed”.

This thesis provides tools for inventing, developing and analyzing possible courses of

action for novel architecting problems so that they can be analyzed more effectively

and efficiently.

The remainder of the thesis is structured as follows:

Chapter 2 provides an overview of the state of practice in decision support systems.

Existing decision support methods are compared with the four layers of needs for the

design activity of architectural decision support.

Chapter 3 provides a new computational framework for decision support called Ar-

chitecture Decision Graph (ADG). ADG represents an interconnected decision prob-

lem as a bi-partite graph of decision variables, property variables, logical constraints,

and property functions. ADG’s algorithms provide tools for reasoning about the

structure of decision problem and simulating the outcome of all sets of feasible com-

binations of decisions. Information about the sets of feasible combinations of decisions

are viewed using two methods: Pareto front plots and decision space views.

Chapter 4 and 5 demonstrate ADG’s representation, methodology and tools on

two aerospace applications. The first application, Chapter 4, is a retrospective study

of the Apollo architecture problem from the 1960’s. The second application, Chapter

5, is a study of human lunar outpost architectures for an on-going study sponsored

by NASA headquarters.

Chapter 6 contains conclusions, a list of contributions, and a discussion of future

work.
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2
Literature Review

2.1 Overview

Chapter 1 established the high-level terms and concepts used in this thesis and out-

lined the needs of an architectural decision-maker. This chapter defines decision

support systems and reviews their state of practice. As pointed out in Section 1.4, in

the case of architectural decision-making, the design activity is most time-consuming

stage of H. Simon’s four stage model of decision-making. The design activity involves

“inventing, developing, and analyzing possible courses of action” [Sim77]. Since the

design activity is the focus of this research, the specific goal of this chapter is eval-

uate the state of practice in decision support tools and to evaluate them against

the representing, structural reasoning, simulating, and viewing needs of architectural

decision-support.

2.2 Definition of Decision Support System

As stated in Chapter 1, a decision is a purposeful selection from mutually exclusive

alternatives. Decision support is the task of assisting decision-makers in making a

decision. Before computers were widely available, the idea of decision support largely

meant providing a rational procedure for arriving at a decision. Today, many software

programs provide decision support systems (DSS) by implementing some form of au-

tomation to support a rational decision making process. These computer software

programs generally assist decision-makers by enhancing communication and process-

ing information to produce new knowledge in support a decision-making process.

D. Power refers to different decision support systems as communication-driven, data-
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driven, document-driven, knowledge-driven, and model driven [Pow02]. The goal of

these systems is to enhance the efficiency of decision-makers by providing tools to

quantitatively and qualitatively explore and increase information about a space of

alternatives for single or multiple decisions.

The definition of DSS is generally wide-reaching; nearly any kind of software

that is used to organize and increase the amount of useful information available to

a decision-maker could be included within this definition. Taken to the extreme, a

word processor document where decision data is recorded, simple spreadsheets which

compute financial information, or presentation slides which provide a more succinct

presentation of information to a group may be included under the umbrella of decision

support systems [Alt80]. For the purposes of this research, the desirable aspects of an

architectural decision support system are more narrowly defined in the next section.

2.2.1 Aspects of an Architectural DSS

The goal of this thesis is to provide a decision support system that satisfies the

representation, structural reasoning, simulation, and viewing needs of an architectural

decision-maker during the “design activity” stage of decision-making. (See Section

1.4). In order to compare the state of practice in decision support tools against these

specific needs, the following four desirable aspects of an architectural decision support

system are defined:

• Representational Aspect – Methods and tools for explicitly (see Section

1.1) encoding architectural decision variables with a set of alternatives, a set of

constraints between decision variables, and a set of metrics to calculate system

properties.

• Structural Reasoning Aspect – Methods and tools for analyzing the struc-

ture of interconnected decision variables. Includes providing information about

the connections between decisions and the ability to manipulate the structure

of the decision problem in order to provide for more efficient simulation of de-

cisions.

• Simulation Aspect – Methods and tools for the identification of feasible com-

binations of decision variable assignments and the computation of multiple prop-

erties of those feasible combinations through the application of metrics.
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• Viewing Aspect – Methods and tools for the presentation of decision sup-

port data from either structural reasoning or simulation results in a human-

understandable format, such as visual plots or tables.

The term “aspect,” which is sometimes called a “cross-cutting concern”, is used

primarily by computing scientists to describe parts of a program that are not easily

partitioned into separate modules [KLM+97, GSS+06]. For example, the representa-

tional aspect, the structural reasoning aspect, and the simulation aspect are cross-

cutting, because the structural reasoning aspect is enabled by the specification of

the representation and the efficiency of the simulation aspect may be dependent on

the structural reasoning techniques. The viewing aspect is cross-cutting because it

involves presenting structural reasoning and simulation information to the decision-

maker. Since the details of these four parts of the problem are interwoven and not

easily partitioned into independent software modules, the four parts of the problem

are considered aspects.

The following sections discuss the state of practice in decision support in terms of

the four aspects given above. At end of each subsection, each of the decision-support

methods or tools is evaluated against how well it provides the representational, struc-

tural reasoning, simulation, and viewing aspects of architectural decision support.

The state of practice section is followed by a summary of the literature review.

2.3 State of Practice

2.3.1 Table and Matrix-Based Decision Support

Morphological Matrix

The Morphological Matrix is a common way to organize decisions in a tabular format.

The morphological matrix was first introduced by Fritz Zwicky in the 1950’s as a

part of the morphological method for studying the “total space of configurations”

(morphologies) of a system [Zwi66]. The use of morphological matrices as a decision

support tool is promoted in the engineering design text book by Pahl and Beitz

[PB95], among others [Rit06]. Figure 2-1 shows an example of a morphological matrix

for decisions related to the design of a lunar lander vehicle (see Reference [SKC06]).

A configuration of the system is chosen by selecting one alternative (labeled “alt”)

from the row of alternatives listed to the right of each decision. Note that alternatives
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Decision alt A alt B alt C alt D alt E alt F alt G
Number of Crew 3 4 5
Number of Crew Compartments 1 2
Number of Propellant Stages 2 3 4
Prop Type -- Stage 1 LOX/LH2 LOX/LCH4 N2O4/Aerozine-50
Prop Type -- Stage 2 LOX/LH2 LOX/LCH4 N2O4/Aerozine-50
Prop Type -- Stage 3 LOX/LH2 LOX/LCH4 N2O4/Aerozine-50 N/A
Prop Type -- Stage 4 LOX/LH2 LOX/LCH4 N2O4/Aerozine-50 N/A
Stage / Maneuver Assigments type A type B type C type D type E type F type G
Moon LV Solution Ares Iplus / Ares V AresIminus / Ares V Ares V only
ISS LV Solution Ares Iplus Ares Iminus Foreign COTS

Figure 2-1: An example morphological matrix for lunar landers.

for different decisions in one configuration of the system do not have to come from

the same column. For example, a configuration of this system could be: number of

crew = 3 (alt A), number of crew compartments = 2 (alt B), number of propellant

stages = 4 (alt C), C propellant type = LOX/LH2 (alt A), and so forth.

In terms of decision support, the morphological matrix is a useful, straightforward

method for representing decision variables and alternatives. It is easy to construct

and simple to understand. However, since a morphological matrix does not represent

metrics or constraints between decisions, it does not provide tools for structuring a

decision problem or simulating the outcome of decisions. As a result of not provid-

ing structural reasoning or simulation features, morphological matrix also does not

provide a viewing aspect.

Although it does not meet the criteria for structural reasoning, simulation, and

viewing listed in Section 2.2.1, the concept of a morphological matrix becomes a useful

part of the representing and viewing aspects of the approach presented in Chapter

3 by providing a simple representation of decision variables and alternatives for a

decision problem.

Design Structure Matrix

DSM is an acronym which generally stands for Design Structure Matrix [EWSG94,

dsm], but sometimes is written as Decision Structure Matrix or Dependency Structure

Matrix. A DSM is an n-squared matrix that is used to map the connections between

one element of a system to others. It’s called n-squared because it is constructed with

n rows and n columns, where n is the number of elements.

When a DSM is used to study the interconnections of decisions, each row and

column correspond to one of the n decisions. Figure 2-2 is an example DSM for the

lunar lander decisions listed in the morphological matrix in Figure 2-1. This DSM

is partitioned and sorted according to the rules in References [Ste65] and [Ste81].
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The number 1 in the intersection between “Number of Crew Compartments” and

“Stage / Maneuver Assignments” indicates there is a connection between these two

decisions. A blank entry in the intersection indicates that there is no direct connection

between these decision variables. The definition of a “connection” could be different

depending on the specific use of the DSM. For example, it could mean that there

exists a logical constraint between the variables, or that a metric function depends

on those two variables. In some cases, the entries in the matrix may have different

letters, numbers, symbols, or colors in them to indicate different types of connections.

Name 1 2 10 3 8 9 4 5 6 7
Number of Crew 1 1 1
Number of Crew Compartments 2 1 2
ISS LV Solution 10 10
Number of Propellant Stages 3 1 3 1
Stage / Maneuver Assigments 8 1 8
Moon LV Solution 9 1 9
Prop Type -- Stage 1 4 1 4
Prop Type -- Stage 2 5 1 1 5
Prop Type -- Stage 3 6 1 1 1 6
Prop Type -- Stage 4 7 1 1 1 7

Figure 2-2: A sorted, partitioned DSM for lunar landers

By itself, a DSM provides a representation layer and structuring layer for decision

support. It represents the decision variables and their interconnections, however, it

does not represent the alternatives for each decision or metric calculation functions.

Using structuring algorithms, a DSM can be sorted to show which sets of decisions are

tightly coupled and which ones are uncoupled. A common use of a DSM is to break a

problem into subproblems for different design teams by identifying clusters of closely

related decisions and separating them from other clusters of closely related decisions.

Since DSM is focused primarily on the connections between decisions and does not

provide a way to record the outcome of choosing different alternatives, it does not

provide a simulation aspect which meets the requirements of a DSS for architectural

decision support as listed in Section 2.2.1. One of DSM’s strengths is that its matrix

representation can be concurrently used as a way to view structural reasoning results.

2.3.2 Tree and Directed Graph-Based Decision Support

Decision Tree

A Decision tree [Rai68] is a well-known way to represent sequential, connected deci-

sions. An example of a decision tree is shown in Figure 2-3. In general, a decision tree
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has three types of nodes: chance nodes, decision nodes, and leaf nodes. Decision nodes

represent decision variables, which are controllable by the decision maker and have

a finite number of possible assignments represented by branches in the tree. Chance

nodes represent chance variables, which are not controllable by the decision-maker

and also have a finite number of possible assignments, which are also represented by

branches. The endpoints or “leaf” nodes in the decision tree represent a complete

assignment of all chance and decision variables.

COVALIU AND OLIVER 

Represeiltatioil and  Solutioil of Decision Problerns 

Figure 1 A Decision-Tree Representation of the Reactor Problem 

value function on T. It is only inspection of the data on 

the three lower subtrees starting at nodes C that reveals 

these independencies. Consequently, identical data is 

repeated on the tree and a simple automated rollback 

solution would recalculate the expected value at these 

C nodes three times with the same result. While this is 

not a significant problem for a small model, it becomes 

increasingly important as the size of the model grows. 

3. Graphical Representation 
We use both the influence diagram and the sequential 

decision diagram complementarily to model and graph- 

ically represent a decision problem. 

3.1. An Influence-Diagram Representation 

An influence diagram for the reactor problem is shown 

in Figure 2.' It shows, among other things, that A is 

(possibly) dependent on T, that C is independent of A 

' 

and T, that, when decision D2 is taken, the choice at Dl 

and the outcome of Tare known to the decision maker, 

and that the value function is (possibly) dependent on 

all variables except T, of which it is conditionally in- 

dependent. 

Figure 2 also illustrates some of the difficulties that 

influence diagrams have in representing asymmetric 

problems. The influence diagram does not show that 

the test may never materialize and then D2 is made 

without knowing its (absent) result, contradicting the 

implication of the (T, D2) arc. One way to "fix" this 

limitation is to add a (D, ,T)  arc and an artificial outcome 

("no result," say) to the domain of T, together with a 

degenerate conditional distribution that, given Dl # t, 

assigns probability 1 to this artificial outcome. This so- 

lution is not satisfactory, since the "revised" influence 

diagram would still not show graphically that T may 

not be realized-the (Dl, T )  arc might be interpreted 

as a probabilistic dependence of T on the decision Dl, 

which, in addition to being an incorrect interpretation 

of the problem, has the disadvantage of rendering the 

diagram into one that is not in the so-called Howard 

canonical form (Howard 1990, Matheson 1990). 

Similarly, the influence diagram does not show that 

only one of A and C materializes, but never both (a  

drawback which can again be "fixed" by the addition 

of arcs and, at the level of function and number, artificial 

outcomes and distributions). Finally, the influence dia- 

gram does not show that if Dl = dn, then decision 

D2 is not made, and that, depending on the outcome 

of T (specifically when T = b ) ,  decision D2 becomes 

Figure 2 An ~nfluence-~iagram Representation of the Reactor Problem 

Reactor Type  

Initial Decision Test  

"Grnal&Value g v a n c e d  
This influence diagram regards the problem as  if i t  zcieue syn~nle t r i c -  

it would require additional arcs to accommodate soiile aspects of the 

asymmetry of the problem. See discussion following. 
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Figure 2-3: Decision Tree from [CO95]. In this tree, decision nodes are squares, chance
nodes are circles, and leaf nodes are diamonds.

Covaliu [CO95] and Kirkwood [Kir93] point out some positive and negative char-

acteristics of decision trees. A decision tree is an explicit representation of the entire

configuration space for an interconnected decision problem that is easily understood

by decision-makers. Simulation of sets of decisions and chance outcomes that are

modeled in a decision tree is achieved by calculating the expected utility for each leaf

node. This is done using a recursive algorithm. An example of the algorithm can be

found in Reference [Kir93].

A key assumption in a decision tree is that a decision problem is sequential. A

decision or chance outcome leads to a subsequent decision or chance outcome in

a pre-specified order. The implication is that succeeding variables are dependent

on the preceding variables. The notions of parallel decision making or conditional

independence of decisions are not explicitly captured in a decision tree.
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An additional issue with a decision tree representation is that its size grows ex-

ponentially with the number of nodes in the problem. It can be extremely large even

for moderately sized problems [Kir93]. A decision tree with 10 decisions, each with

3 choices leads to 310 = 59049 endpoints. Ten is not considered a large number of

decisions for many engineering or business decision problems. As a result of decision

tree’s representational inefficiency, structural reasoning is available only on a limited

basis. In order to investigate the possible implicit conditional independence of one

decision variable on another one, it is necessary to compute across all branches of the

tree that include that variable.

The decision tree formulation for sequential decision problems can be enhanced

using the influence diagram (ID) and the sequential decision diagram (SDD). These

two enhancements for decision tree are discussed in the following subsections. After

the presentation of ID and SDD, the applicability of these three related methods to

the design activity for decision support in systems architecting will be discussed.

Influence Diagram

An influence diagram (ID) [CO95, HM84, HM05] can be thought of a more compact

representation of the variables and structure of a decision problem than a decision

tree. An example of an influence diagram is shown in Figure 2-4. Like the decision tree

in Figure 2-3, decision nodes are squares and chance nodes are circles. Conditional

independence between variables and information flow is indicated using directed arcs.

If a variable depends on the input from another variable, an arc is connected from

the preceding variable to the succeeding variable. Unlike a decision tree, an influence

diagram is representationally space efficient; the size of an influence diagram grows

linearly with the number of variables. Each variable is indicated in the ID once,

including the multiple leaf nodes depicted in the decision tree, which are compressed

to one “sink” node (marked with V in the figure).

Influence diagrams are considered a useful representation because they explicitly

capture the information that some variables are irrelevant given certain assignments

to other variables. An irrelevant decision variable is one that is not applicable given

the results of other variables. This information can be used to pre-compile a cor-

responding decision tree to reduce the total number of branches. The structure of

the influence diagram directly impacts the decision tree construction. In the case of

example in Figure 2-4, one possible decision tree realization is given in Figure 2-3.
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Figure 1 A Decision-Tree Representation of the Reactor Problem 

value function on T. It is only inspection of the data on 

the three lower subtrees starting at nodes C that reveals 

these independencies. Consequently, identical data is 

repeated on the tree and a simple automated rollback 

solution would recalculate the expected value at these 

C nodes three times with the same result. While this is 

not a significant problem for a small model, it becomes 

increasingly important as the size of the model grows. 

3. Graphical Representation 
We use both the influence diagram and the sequential 

decision diagram complementarily to model and graph- 

ically represent a decision problem. 

3.1. An Influence-Diagram Representation 

An influence diagram for the reactor problem is shown 

in Figure 2.' It shows, among other things, that A is 

(possibly) dependent on T, that C is independent of A 

' 

and T, that, when decision D2 is taken, the choice at Dl 

and the outcome of Tare known to the decision maker, 

and that the value function is (possibly) dependent on 

all variables except T, of which it is conditionally in- 

dependent. 

Figure 2 also illustrates some of the difficulties that 

influence diagrams have in representing asymmetric 

problems. The influence diagram does not show that 

the test may never materialize and then D2 is made 

without knowing its (absent) result, contradicting the 

implication of the (T, D2) arc. One way to "fix" this 

limitation is to add a (D, ,T)  arc and an artificial outcome 

("no result," say) to the domain of T, together with a 

degenerate conditional distribution that, given Dl # t, 

assigns probability 1 to this artificial outcome. This so- 

lution is not satisfactory, since the "revised" influence 

diagram would still not show graphically that T may 

not be realized-the (Dl, T )  arc might be interpreted 

as a probabilistic dependence of T on the decision Dl, 

which, in addition to being an incorrect interpretation 

of the problem, has the disadvantage of rendering the 

diagram into one that is not in the so-called Howard 

canonical form (Howard 1990, Matheson 1990). 

Similarly, the influence diagram does not show that 

only one of A and C materializes, but never both (a  

drawback which can again be "fixed" by the addition 

of arcs and, at the level of function and number, artificial 

outcomes and distributions). Finally, the influence dia- 

gram does not show that if Dl = dn, then decision 

D2 is not made, and that, depending on the outcome 

of T (specifically when T = b ) ,  decision D2 becomes 

Figure 2 An ~nfluence-~iagram Representation of the Reactor Problem 

Reactor Type  

Initial Decision Test  

"Grnal&Value g v a n c e d  
This influence diagram regards the problem as  if i t  zcieue syn~nle t r i c -  

it would require additional arcs to accommodate soiile aspects of the 

asymmetry of the problem. See discussion following. 

MANAGEMENT 41, NO. 12, December 1995SCIENCE/VO~. 
Figure 2-4: An Influence Diagram from [CO95]

Notice that some branches in the decision tree are skipped if they are irrelevant.

This is a key advantage since the pre-compilation can eliminate potentially wasted

computing cycles.

Like decision trees, influence diagrams assume there is a fixed sequence of influence

in a decision problem. However, influence diagrams provide more structural reasoning

ability than a decision tree alone, since variables that do not directly influence each

other can be identified by following paths through the diagram. When an influence

diagram is compiled into a decision tree, the variables in the tree can be arranged in

any sequence as long as all successor nodes always follow their predecessor nodes in

the ordering. Using an influence diagram to guide the construction of a tree allows

the decision tree to be built in such a way that it is more space and time efficient

[HM05]. Structural reasoning is provided by the ability to sequence a decision tree

before simulating it. Since simulation of IDs are provided by decision tree algorithms,

it is limited to expected utility calculation. Influence diagrams provide one form of

viewing. They can be used to generate a visualization of a corresponding decision

tree. However, as pointed out above, the decision tree may be impractically large if

there are a moderately large number of variables involved.

Sequential Decision Diagram

Covaliu and Oliver present an alternative to decision trees and influence diagrams

called Sequential Decision Diagrams (SDD) [CO95]. SDD is a directed acyclic graph

that is similar to an influence diagram. It contains more specific information than an

influence diagram, such as variable assignments and rules for feasible and infeasible

combinations of decision assignments. The directed arcs in a SDD specify both the

36



possible assignments of a variable and the rules that may prevent a combination of

alternatives of particular variable assignments. Similar to decision trees and influence

diagrams, sequential decision diagrams have the limiting assumption that there is a

particular sequence of decision and chance variables that must be followed for a

decision problem.

A SDD is shown in Figure 2-5, which corresponds to the same decision problem

as the decision tree in Figure 2-3 and the influence diagram in Figure 2-4. In this

example, the decision variable D2 can lead to chance variables A or C; however, D2

will only lead to A if T 6= b. Like an influence diagram, the multiple leaf nodes of a

decision tree are compressed into one “sink” node called V .

COVALIU AND OLIVER 

R e p r e s e ~ ~ t a t i o ~ ~  of D e c i s i o ~ ~  and  S o l u t i o ~ ~  Prob le t l~s  

degenerate, i.e., the conventional reactor is always cho- 

sen (see Figure 1 ) .  These latter limitations cannot be 

fixed in the conventional influence diagram paradigm 

even at the level of function and number, since, by con- 

vention, the decision-node space is fixed for all c~n t in -  

gencies. 

There are exactly 5 possible variable-realization se- 

quences in the reactor problem, only one of which 

eventually obtains: (DIV ), (D1TD2CV), (D,TD2AV), 

(DID2CV), and (Dl D2AV). Unlike a decision tree, an 

influence diagram does not convey these sequences. At 

the relational level, the influence diagram of Figure 2 

represents a multitude of variants of the actual problem, 

and best does so for the symmetric one, in which all 

scenarios contain the same sequence of variable real- 

izations, say DITD2CAV. A symmetric decision tree 

consistent with this variant would have 3 X 3 X 2 X 2 

X 3 = 108 terminal nodes. One advantage of the de- 

cision tree model is clear: it depicts asymmetry explicitly, 

and thereby allows reduction to only 18 terminal nodes. 

A comparison of Figures 1 and 2 also illustrates the 

graphical incompatibility of decision trees and influence 

diagrams: 31 nodes in the former but only 6 in the latter 

are used to represent the same decision, chance, and 

value variables. The sequential decision diagram cap- 

tures asymmetric, sequential, and flow-of-information 

aspects of a decision problem. Along with it, we will 

use in our framework an influence diagram to reveal 

the conditional independence assumptions and the joint 

probability distribution expansion. Since the sequential 

decision diagram takes care of the asymmetry aspects, 

the influence diagram in our framework is the sparsest 

diagram that adequately represents the decision problem 

as if it were symmetric .  Thus, to represent the reactor 

problem for example, the influence diagram of Figure 

2 would be the one to be used, along with the sequential 

decision diagram of Figure 3 below. 

3.2.  A Sequential-Decision-Diagram 

Representation 

A sequential decision diagram, referred hereafter simply 

as a "sequential diagram," is a directed, acyclic graph 

whose nodes represent a decision problem's variables 

and whose directed paths correspond to all possible se 

quences of variable realizations. As in influence dia- 

grams, each variable is represented by one node, which 

Figure 3 A Sequential-Decision-Diagram Representation of the Reactor 

Problem 

may be one of the following four types: decision, de- 

noted by a square, chance, denoted by a circle, deter- 

ministic,' denoted by a double circle, and value, denoted 

by a diamond. An arc in a sequential diagram indicates 

that, following a realization of the tail node, the head 

node may next be realized. When multiple arcs emanate 

from a node, the next node to be realized depends on 

the realization value at that node, which is the selected 

alternative at a decision node or realized outcome at a 

chance or deterministic node. Sometimes, the next node 

to'be realized may also depend on realization values at 

nodes preceding the current node. 

Figure 3 shows a sequential diagram for the reactor 

problem. It depicts explicitly and compactly the asym- 

metric structure of the problem. For example, it shows 

that only when Dl = t will tests be performed, and that 

C and A are exclusive events. There are exactly 5 directed 

paths from node Dl to the value node, V, corresponding 

to the five variable-realization sequences listed above. 

To show the dependence of the next-to-be-realized 

node on the realization value at a current node, we in- 

dicate on each of the multiple arcs emanating from the 

latter the corresponding subset(s) of its realization val- 

ues. When the next node also depends on realization 

values at predecessor nodes, we will indicate the latter's 

corresponding realization-value ranges as well. In Figure 

Deterministic nodes are not essential in the sequential-diagram-based 

framework, since they can always be regarded as a degeneratechance 

node. They may, nevertheless, be meaningful in influence diagrams 

and may streamline formulation and computations in some cases. 

MANAGEMENT 41, NO. 12, December 1995SCIENCE/VOI. 1864 

Figure 2-5: Sequential Decision Diagram from [CO95]

SDD provides a more comprehensive representation of a decision problem than an

influence diagram since it includes alternatives in the representation. Alternatives are

shown as annotations on the directed arcs. Furthermore, decisions or chance nodes

that are only relevant if a certain decision is made are also indicated in the SDD. In

Figure 2-5 the first decision in D1. The set of alternatives for D1 are t, nt, and dn. If

t is selected, then the chance node for T is relevant. Likewise, if nt is selected, then

the decision node for D2 is relevant. Finally, if dn is selected, then all other nodes are

not relevant. These implications of the SDD sequence in Figure 2-5 are clearly shown

in the Decision Tree in Figure 2-3. By pre-specifying the sequence before creating the

decision tree, branches that are irrelevant can be eliminated.

Sequential Decision Diagrams provide some forms of structural reasoning. Since

some (but not necessarily all) of the alternatives for decision variables are explicitly

shown in the SDD, a decision-maker can draw some conclusions about the connectivity

between decision alternatives and other decision or chance nodes, when the relevant
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information is presented in the diagram. However, since the sequence of the SDD is

fixed by the decision-maker who enters the problem, the notion of manipulating the

structure of the decision problem is not provided by SDD.

According to Reference [CO95], SDD’s algorithms for decision simulation is more

efficient than a traditional decision tree. However, the type of information is limited to

the calculation of a linear, monotonic utility function that is the sum of the products

of utilities and probabilities. The calculation of multiple value functions or non-linear

functions of the decision is not possible using neither SDD, ID, or decision trees.

Evaluation of the Decision Tree, Influence Diagram and Sequential Decision Diagram

Among the three preceding representations presented in this subsection, decision tree,

influence diagram, and sequential decision diagram, the sequential decision diagram is

strictly better than the other two in terms of representing, structural reasoning, and

simulating. In terms of viewing the structural reasoning results, SDD and Influence

diagrams provide the same type of viewing results: they both have the ability to

generate a visual decision tree. In terms of the specific needs for architectural decision

support, these methods are not directly used by the framework presented in Chapter

3 for two reasons: they assume that the evaluation of the decision variables is a

sequential process. In Chapter 3 we show that architectural concept design problems

are more appropriately represented as non-sequential decision-problems rather than

sequential decision problems.

Markov Decision Process (MDP)

A Markov model, or Markov decision process (MDP), is a well known encoding

for structured decision processes (“programmed” decisions in Simon’s terminology)

which contain both uncontrollable, probabilistic variables and controlled variables. A

Markov decision process is formally written as the 4-tuple, 〈S, A, Pa, ga〉, where S is

a state space, Ax is a set of actions possible at state x, Pa(x, y) is the probability of

transitioning from state x to state y, and ga(x) is the reward at state x when action

a is taken[Puc06, Ber05].

MDP’s are characterized by the Markov assumption (sometimes called the Markov

property), which assumes that the probability distribution of future states only de-

pends on the current state. In other words, the state history is not taken into account

when calculating the probabilities or rewards for the next state. MDPs are generally
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solved using dynamic programming techniques, such as value iteration.

There are many uses for MDPs. Typical problems include the so-called “knapsack”

optimal packing problem, which determines the way to fit the most items into one or

more containers (useful in the logistics domain). Another common MDP problem is

the financial portfolio selection problem with discounted returns [Puc06]. MDPs have

even been used to combinatorially create music [Roa96]. S. Brin and L. Page used an

MDP over a graph representation of the world wide web to create Google’s famous

PageRankTM system [BP98]. Markov models can be extended to include partially

observable states and observations, to become partially observable Markov decision

processes (POMDP) or hidden Markov models (HMM). One common application of

these methods is speech recognition [Rab89, RJ86, Ber05, Mon82].

Figure 2-6: A Hidden Markov Model. x represents states, y represents observations, a
represents actions, and b represents output probabilities. Source: [Wik07].

Although there are many excellent uses for MDPs in engineering, it is best suited

for programmed (structured) decision problems where the possible set of states, ac-

tions, and transition probabilities can be derived before any computation takes place.

For structured decision problems, Markov models have been shown to be an effective

representation and there exist many different simulation methods to find optimal so-

lutions. Some of these tools may exploit the structure of the problem to speed up

computation. However, for an unprogrammed/unstructured problem, like decisions

in systems architecting, an MDP problem would be difficult to use. For instance, the

possible configurations of the system are generally unknown at the beginning of the

decision making process. Another issue is that in systems architecting, future deci-

sions are dependent on multiple past decisions. In general, the Markov assumption

will not hold. However, in the some methods, such as the Time-Expanded Decision
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Network (TDN), the Markov assumption can be side-stepped by including the state

history in the state itself.

Time-Expanded Decision Network (TDN)

One application of Markov models to support decision-making in systems design is

Silver and de Weck’s Time-Expanded Decision Network (TDN) [SdW07]. TDN avoids

some of the limitations of a Markov model by including a state history as part of the

definition of the state. Although this strategy is usually avoided in the formulation of

a Markov model because it negatively impacts computational performance [Ber05],

it isn’t a major concern in this case because TDN models are always acyclic (no

infinite loops) and have a relatively small number of nodes. Figure 2-7 is an example

visualization of a TDN.

ing requirements on the system by creating various
demand scenarios. Demand scenarios can be determi-
nistic, involving known levels of demand at each pe-
riod, or they may be probabilistic, in which case
multiple instances of the TDN have to be solved, one
for each uncertain scenario.

A simple way to examine the space of demand
possibilities is to create a number of discrete demand
profiles that are likely to occur over time (i.e., steadily
rising demand, constant demand, falling demand, and a
limited combination of the three) and applying these to
the network. Another way involves modeling using

Geometric Brownian Motion (GBM) and applying
multiple combinations of demand scenarios (Fig. 6)
[see Haberfellner and de Weck, 2005]. In all cases the
demand scenarios are time-discretized, and the infor-
mation is injected in the appropriate chance nodes.

An important point with respect to the TDN meth-
odology is that the four cost elements can be calculated
using separate and standard cost models and then used
as inputs to the time-expanded network. That is, the
total cost of operating in each time period can be
computed as a function of the demand scenario and the
particular present state (configuration) of the system,

Figure 5. Refined Time-expanded Decision Network. Chance nodes are circles, decision nodes are squares. Nodes are numbered
in topological order.

Figure 6. Geometric Brownian Motion (GBM) model of uncertain demand, ∆T = 1 month, D0 = 50,000, µ = 8% p.a., σ = 40%
p.a.—three scenarios are shown, based on de Weck, de Neufville, and Chaize [2004].
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Figure 2-7: An example of a Time-Expanded Decision Network (TDN). Operating and
switching costs over time are modeled for three concepts, A, B, and C. (source [SdW07])

TDN is used as a way to generate an optimal strategy for switching between design

concepts depending on uncertain future. It can be used as a design tool to quantify

the value of real options in terms of the effect of reducing switching costs [de 90]. As a

representational method, TDN can show the relationship between different switching

decisions between architectural concepts. TDN does not provide structural reasoning

tools, since its structure is assumed to be a static time-expanded network. TDN’s

simulation tools can be used to calculated the expected cost of switching between

architectural concept as well as identify paths through the network which are more

robust to operating conditions changing over time. As a viewing tool, TDN provides

methods presenting the information about the switching costs.
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Although TDN is a powerful tool for its indented application, it is based on dif-

ferent assumptions about the architectural space than the ones used in this thesis

(assumptions will be listed in Chapter 3). TDN assumes that a selection of architec-

tural concepts are available at the beginning of the decision analysis. The approach

presented in Chapter 3, Architecture Decision Graph (ADG), does not assume this

is the case. ADG assumes the process starts in the design-activity stage of decision-

making, and the possible courses of action must be invented first, then analyzed. The

differences between TDN and ADG provide an opportunity for future research, which

will be discussed in Chapter 6.

2.3.3 Constraint Graph-Based Decision Support

Constraint Models (CSP and SAT)

Constraint Satisfaction Problems (CSP) are characterized by a set of decision vari-

ables each with a finite domain of possible assignments. Decision variables are in-

terconnected by constraints. CSP problems can be represented visually as a graph,

where the nodes indicate decision variables and the arcs indicate the constraints be-

tween variables. Propositional satisfiability problems (also known as SAT problems)

are CSP problems where the decision variables are limited to the values true and

false.
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Figure 2-8: An example of a map-coloring constraint satisfaction problem. On the left,
a map of western Europe that must be painted using the three colors, yellow, red,
and blue such that no two adjacent countries have the same color. On the right, the
visualization of the corresponding constraint satisfaction problem representation.

Standard CSP problems only allow “hard” constraints. Every hard constraint

specified between variables must be satisfied to achieve a valid solution. An example

of a standard CSP decision problem is shown in Figure 2-8. This is a typical map-
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coloring problem. The partial map of Europe includes eight countries which must

be painted with the colors yellow, red, or blue. The constraints in this problem

(represented by arcs in the graph on the left) state that no two adjacent countries

can have the same color.

A valued-CSP is a CSP that is augmented with a global cost function. The

functional elements that make up the global cost function are often called “soft”

constraints. Soft constraints indicate the “weight” for particular decision variable

assignments. A Valued CSP can be written as a 4-tuple 〈X,D,Ch, Cs〉, where

• X = {x1, x2, ..., xn} are decision variables.

• D = {d1, d2, ..., dn} are the decision variables’ domains (di is a finite set of

assignments for variable xi.).

• Ch = {H1, H2, ..., Hk} is a set of k hard constraints, and is defined by a scope

of variables it applies to, and a logical relationship among the variables.

• Cs = {F1, ..., Fm} is a set of m soft constraints, which are the functions Fj. The

functions are summed together to form a global fitness metric, M =
∑m

j=1 Fj .

An example of a valued-CSP decision problem is the map-coloring problem from

Figure 2-8 augmented with a function that adds costs for each color of paint. The

cost function is implemented using soft constraints that measure the cost for each

paint color. For example, the soft constraint might specify that yellow paint costs $2,

red paint costs $4, and blue paint costs $6. The global objective is to find a solution

to the map coloring problem which satisfies all hard constraints and minimizes the

paint cost function. Valued-CSPs are a form of Constraint Optimization Problem

(COP) [Dec03].

There are many other extensions of Constraint Satisfaction Problems with other

problem solving goals. Some examples of these extensions are modeling counting

solvers, Maximum Satisfiability (MAX-Sat), and Weighted CSP (WCSP). Model

counting solvers determine the number elements in the set of solutions that satisfy all

constraints. Max-SAT problems attempt to find the solution that violates the fewest

number of constraints. Max-SAT is useful if solutions that satisfy all constraints

do not exist. Weighted CSP (WCSP) is similar to Max-SAT, but includes penalties

for each constraint and attempts to find the solution that has the lowest penalty.

WCSP is used to find the solutions that violate only the least important constraints

[dLMS03, Dec03].
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Of the decision support methodologies listed so far, CSP is the method that is

best aligned to the four aspects of an architectural DSS. As a decision problem rep-

resentation, graphical constraint satisfaction problems provide a method to represent

decision variables, alternatives, and logical constraints between the decision variables.

Valued-CSP provides a way to augment a CSP problem with an objective function

which satisfies certain properties such as identity and monotonicity[SFV95]. The de-

cision problem representation in CSP is fundamentally non-sequential, since a specific

sequence of decision variables is not pre-specified. The representational features of

CSP are strongly aligned with our needs for architectural decision support tool.

Structural reasoning in CSP is possible through heuristic sorting algorithms which

determines efficient decision evaluation orders for the simulation. Alternatively, some

CSP solution approaches use a Tree decomposition algorithm to rearrange the graph-

ical structure of the CSP in order to increase computational efficiency (For example,

see the AND/OR approach for solving CSPs: [Dec04, KDLD05, Mat07]).

Simulation of a CSP can be used to attempt to find a single, feasible set of as-

signments for a decision problem, if it exists. Valued-CSP’s can be used to find the

single feasible set of assignments for a decision problem which has the highest possible

valuation function. With some modifications to existing simulation algorithms, it is

possible to return more than one set of feasible assignments for a CSP [RN02].

CSP problems provide some level of decision problem viewing. In some cases, the

structural reasoning results can be presented in an AND/OR tree. An AND/OR tree

can be used to identify independent subproblems within a CSP’s structure. Usually,

this information is used in order to reduce computation resource requirements.[BHW81,

DM07, Mat07], but Reference [SKC07] claims it could also be used by a decision-maker

to gain insight into the independent branches of a decision problem. The survey of

CSP literature did not include decision-data viewing methods of tools that present

properties of feasible solutions of the CSP problem. This specific need is one of the

topics addressed in the Approach in Chapter 3.

2.3.4 Meta-Language-Based Decision Support

Object-Process Network (OPN)

Object-Process Network (OPN) is a meta-language for encoding, enumerating, and

evaluating specific architectural design spaces that was introduced by B. Koo in
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Reference [Koo05]. OPN is an algebraic systems representation and reasoning lan-

guage [KSC07b, KSC07a]. In practice, Koo’s meta-language has been shown to be

a very powerful tool for automating certain architectural model construction tasks

[SKC05a, SKC05b, CCC06, Cam07, Roz07, HKZ07, SPL07].

By automating tasks in architectural reasoning and model construction, OPN can

be considered an architectural decision support system [SKC07]. OPN uses a bi-

partite graph of Objects and Processes, connected by relationships to represent the

space of alternative constructions of systems. A very simple OPN diagram is shown

in Figure 2-9. A more complex example from Reference [SKC05a] is shown in Figure

2-10.

Object 1

Process 1

Object 2

pre-condition post-condition

Figure 2-9: A simple OPN. Objects are indicated by green rectangles and processes are
indicated by blue ellipses. The relationships between the objects and processes, the pre-
and post- conditions, are indicated by arrows.

As a simulation language, OPN satisfies the decision support needs of generating

alternative feasible compositions of decisions and evaluating them. The evaluation of

models in OPN can be driven by either user-provided metrics, symbolic calculation

of performance, or by construction of customized equations on the fly for specific

architectural alternatives1.

Although OPN is a relatively new decision support system it has been applied

successfully to several decision problems. In studies supporting decisions for NASA’s

human Moon and Mars exploration program, it was used to model the mission-mode

decision problem [SKC05a], the cargo launch vehicle configuration decision problem

[SKC05b] and a NASA stakeholder policy problem [CCC06, Cam07]. In support of

study of arctic oil exploration architectures, it was used for an ice protection decision

problem, an oil extraction and treating problem, and a process sequencing decision

problem [Roz07]. OPN has also been used to study reconfiguration of business pro-

cesses [XKZ07] and manufacturing processes [HKZ07].

1Dynamic metric equation construction was demonstrated in the Apollo study in Reference
[Koo05].
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As a architectural decision support system, OPN has both strong and weak char-

acteristics. As a representational language, OPN has the ability to implicitly encode

decision variables, chance variables, metrics, and logical constraints. However, in

practice we have found that modeling a decision problem in OPN’s Pertri-net-like

format connecting objects, processes, and relationships can be conceptually difficult

for systems architects. Although OPN implicitly represents the structure of a decision

problem, it does not have algorithms for structural reasoning which meet the crite-

ria in Section 2.2.1. The implementation described in References [Koo05], [KSC07c],

and [KSC07b] does not explicitly provide the ability to manipulate the structure of

the decision problem to increase computational efficiency or to provide information

about the connectivity of decision variables. As a simulation tool, OPN can be con-

sidered quite powerful, since it provides hybrid numerical and symbolic solvers and

can be extended to use external computational tools by importing libraries through

its Jython[PR02] script interface. OPN provides some viewing tools that can produce

plots of generated feasible architectures, however, there is little guidance as to what

type of plots would be useful for supporting architectural decision-making.
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Initialization

 E Orbit
(launch)

M Orbit Ops
(arriving)

M Orbit Ops
(departing)

M Surface Ops

E Orbit
(landing)

Figure 2-10: An OPN for studying the space of alternative options for mission modes for
human moon and Mars exploration. This OPN model was used to partition the infinite
space of possible mission mode trajectories into a finite set of 1162 partitions using a
motion language [Fra01] abstraction. See Reference [SKC05a] for more details.

46



2.4 Summary

The goal of this chapter was to identify existing methods from decision support liter-

ature and evaluate them against the specific needs of architecture decision-support.

The survey of the state of practice (Section 2.3) listed nine different methods for

decision support. The representational, structural reasoning, simulation, and viewing

aspects of each method were compared against the desirable aspects of a method for

architectural decision support listed in Section 2.2.1. Table 2-1 identifies how well

each one of the nine methods meets the needs of an architectural decision support

system.

Table 2-1: Comparison of nine decision support methods to the aspects of architectural
decision support listed in Section 2.2.1. Key: “++” == the aspect of the method
meets the needs, “+” = the aspect of the method partially meets the needs.

Representing Structural Reas. Simulating Viewing

Morphological Matrix + +

Dependency Structure Matrix + + +

Decision Tree + +

Influence Diagram + + +

Sequential Decision Diagram + + +

Markov Decision Process + + +

Time-Expanded Decision Network + + +

Constraint Satisfaction Problems ++ ++ +

Object-Process Network + ++ +

Aspects of an Architectural DSS

Two of the methods in Table 2-1 are particularly interesting: constraint satisfac-

tion problems (CSP) and Object-Process Network (OPN). As pointed out in Section

2.3.3, the CSP method has the representational ability to explicitly encode decision

variables with alternatives, logical constraints, and metric functions in one graph

representation. Additionally, CSP has structural reasoning features which can be

used to analyze the structural properties of the decision variables and manipulate the

structure of a decision problem to enable more efficient simulation. The simulation

aspects of conventional CSP solvers provide for metric calculation of a restricted class

of functions, however with some extensions, they could be used to calculate different

types of functions. Since CSP was not explicitly invented for architectural decision

problems, the literature for CSP lacks specific discussion of methods for viewing the

simulation results.

The second interesting method is Object Process Network (OPN). OPN was orig-

inally described as a meta-language for systems architecting in Reference [Koo05]. It

implicitly represents an architectural decision problem by providing a meta-language
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with sufficient syntax and semantics for creating a customized domain-specific lan-

guage to model the space of alternative architectural candidates. Although this

approach has been shown to be an effective representation for several architecting

problems (see Section 2.3.4), experience with OPN has also shown that it is con-

ceptually difficult for an architect to model architectures using this approach. OPN

provides powerful simulation features which can generate a set of feasible solutions

and calculate numerical properties through its internal numerical algebraic processor

or through external functions calls.

The next chapter presents a framework for supporting architectural decision-

making. The features of CSP and OPN are mixed to create a new representation

which combines the advantages of the both approaches. In addition, some new archi-

tectural decision space viewing tools are developed to provide the ability to present

structural reasoning and simulation data to the architect.
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3
Architecture Decision Graph

3.1 Overview

In Chapter 1 the motivation for this research and the goals of this thesis were de-

scribed. Specifically, the needs of the decision-maker were subdivided into four layers:

representing, structural reasoning, simulating, and viewing an interrelated decision

problem. Chapter 2 connected the four layers of needs with four aspects of desirable

features for an architectural decision support system. The features of nine exist-

ing decision support methods were compared against these four aspects. Out of the

nine methods, two were especially interesting: Constraint Satisfaction Problems and

Object-Process Network. In this chapter, the features of these two methods are mixed

and supplemented to create decision support framework based on a decision problem

representation called Architecture Decision Graph (ADG).

ADG is a decision-focused representation for architecture decision support, built

on top of the principles of the morphological method [Zwi66], graphical constraint

problem solving [Dec03], and the OPN meta-lanaguage for systems architecting [Koo05].

Formally, an ADG is a bipartite graph representation of an architectural decision

problem. ADG provides decision problem structural reasoning algorithms that can

extract properties of the decision variables from the structure of the graph. A deci-

sion problem represented in ADG is automatically compiled into an Object-Process

Network for enumeration of feasible combinations of decisions and for simulation of

decision outcomes.

The structure of this chapter is as follows: First, the assumptions and the key

contributions from the literature are explained. Next, an overall view of ADG frame-

work is discussed. The subsequent subsections describe the representation, structural

reasoning, simulation, and viewing aspects of the ADG framework, with the aid of
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a simple decision problem involving five interconnected decisions. The chapter con-

cludes with an analysis of ADG’s properties, performance and a chapter summary.

3.2 The Architecture Decision Graph Framework

The overall goal of systems architecting is to find satisfactory, or preferable, solutions

that are logically feasible and balance competing considerations in a way that is ac-

ceptable to the decision maker. Architecture decision graph assists decision-makers

by providing the tools to represent a decision space with multiple, interconnected de-

cisions, reason about its structure, and simulate the outcome of possible combinations

of decisions.

The specific objective of ADG is to provide a decision support system that sat-

isfies the representation, structural reasoning, simulation, and viewing needs of an

architectural decision-maker (Section 1.4). ADG is intended for use during the early

system design phase. According to Simon’s classification (see Section 1.2), early sys-

tem design phase problems can be classified as non-programmed decision problems.

The ADG method is specifically useful for the “design” activity of decision making:

inventing, developing, and analyzing possible courses of action.

3.2.1 Assumptions

The ADG modeling framework is based on the following assumptions:

Assumption 1 The steps of architecture refinement can be characterized as decisions

applied to the architecture space.

As stated in Section 1.3, the process of systems architecting is a process in which

decisions are made to partition and select parts of a design space. Decisions are the

steps of architecture refinement which reduce the space of architectural candidates.

This view of the design process for engineering systems has been asserted by other

authors in references such as [Abr65] and [Cat06]. However, those references did not

include a method or tool for developing and analyzing architectural alternatives by

representing them as a set of interconnected decisions.

Assumption 2 Each decision can be represented by a decision variable with a do-

main that is a finite set of mutually exclusive alternatives.
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The assumption of mutually exclusive sets of alternatives is a standard assump-

tion in decision theory [Han05] and constraint programming [RN02]. This apparent

limitation can be overcome by using two different methods. The first method is to

construct a set of alternatives for the decision variable that explicitly includes the

overlapping combinations as new alternatives. For example, consider a decision vari-

able has the set of choices {A, B, C}. If the decision maker wants to include the

choice “A and B” or “A, B and C”, then the set of alternatives can be revised to have

these five elements: {A, B, C, AB, ABC}.
The second method is to decompose the decision variable into several decision

variables. The decision variable with the domain of assignments {A,B,C} could be

replaced by three decision variables: A with the domain {yes,no}, B with the domain

{yes,no}, and C with the domain {yes,no}.

Assumption 3 continuous decision variables can be approximated as discrete deci-

sion variables with a finite set of alternatives.

The goal of ADG is to assist a decision maker in finding categories of satisfactory

solutions, while taking into account competing considerations. The goal is not to

provide an optimal solution. By first narrowing the decision space to a satisfactory

sub-space of the original design space, decision-making and engineering resources can

be focused on finding an optimal solution later in the design process.

This assumption limits the precision of ADG’s results, but does not limit its ability

to encode decision spaces that include continuous variables. A continuous variable

can always be represented by a discrete variable which takes on either certain values

or a range of values. Consider a continuous decision variable X, which can take

on the values from −∞ to ∞. A discrete approximation for this variable can be

transformed into the variable Xdiscrete with the set of just two possible assignments

{(X < 0), (X ≥ 0)}. A more specific example is a decision about the budget for a

large project. The exact budget may have a range of assignments between 10 and

25 million dollars, however, the range of values can be approximated by the set of

specific values: {10 million, 15 million, 20 million, 25 million}.

Assumption 4 Decisions are not necessarily sequential.

Many decision support systems assume that there is a fixed order in which deci-

sions can be made. In DSS frameworks like DSM, decision trees, influence diagrams,
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sequential decision diagrams, and object process networks, decision makers are re-

quired to specify a particular order of evaluation for the set of decision variables. For

many decision problems, such as problems that deal with planning actions over time,

this may be appropriate [RN02].

The ADG framework assumes that decisions can be made in any order. ADG uses

this assumption because the restrictions between two decision variables in systems

architecting are often bi-directional. From a logical constraint standpoint, it doesn’t

matter which decision one makes first, because the order will not change the decision’s

effect on the feasible domain of alternatives of a connected decision.

For example, consider two related decisions:

1. What will I cook for dinner?

2. What ingredients will I buy?

This set of two decisions appears to be temporally constrained: choosing the recipe

before going shopping seems to make more sense. In a representation such as a

DSM, influence diagram, SDD, or decision tree, the decision-maker would have to

choose which decision comes first. However, even though these two decisions are

related, there is no reason why these two decisions must be in the order 1 then 2, or

2 then 1. It may make more sense to go to the market and buy what’s fresh before

choosing which recipe to cook. The feasibility constraint between the two decisions

is bi-directional: the recipe for the meal must match the food that is purchased.

By writing the constraint in this way the sequence of decisions does not have to be

pre-specified in the decision representation.

The intention of this assumption is to simplify the problem specification of archi-

tectural decision problems. The ordering can be derived from the structure of the

problem rather than by the judgement of the decision-maker.

3.2.2 Key Contributions from Previous Literature

The concept1 for the Architecture Decision Graph combines several attributes and

ideas from the methods and tools listed in Chapter 2. Specifically, ADG builds

upon ideas from the Morphological Matrix, constraint networks, and Object Process

Networks. The breakdown of the contributions from these methods and tools is listed

in Table 3-1.
1a mapping of a system’s function to its form [Cra07]
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Table 3-1: Previous work leveraged for building the ADG framework.

Aspects of a DSS

Method/Tool Representing Structuring Simulating

Morphological Method
√

Constraint Satisfaction Problems
√ √

Object-Process Network (OPN)
√ √

The morphological method [Zwi66] provides the basic ideas for partitioning a

system architecture possibility space in terms of a set of decisions with mutually

exclusive sets of alternatives. Specifically, the morphological method provides the

morphological matrix, an easy-to-understand table specifying the decision variables

and the alternative assignments. In ADG, the morphological matrix is used as one of

the possible decision problem entry methods.

Constraint Satisfaction Problems offer a way of encoding the interconnectivity of

non-sequential decision variables. Constraint graph methods also provide algorithms

for structural reasoning over a decision problem [DP89, Mat07, KDLD05].

Object Process Network (OPN) provides a powerful enumeration engine for gen-

erating feasible sets of combinations of decisions as well as a simulation engine that

provides hybrid symbolic/numeric evaluation of metrics. OPN also provides the basic

toolset for representing a system in a bipartite graph. OPN’s tools, written in Java,

were modified to represent a decision problem in a bipartite graph, rather than OPN’s

standard directed graph Petri-net-like representation.

3.2.3 Overview of the ADG Reasoning Cycle

The purpose of ADG is provide a representation of an architecting problem in terms

of decision variables, logical constraints, and property functions. The purpose of the

entire ADG framework, which includes representational, structural reasoning, simu-

lation, and viewing aspects, is to provide a way to explore an architectural candidate

space and gain insight into the architecture problem. Exploring the architectural

candidate space involves determining the feasible combinations of decision variable

assignments and their properties. Gaining insight into the architecture problem in-

volves determining properties of the architectural decision variables, such as their

potential impact on system properties or the set of available alternatives for other

decisions.
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The ADG framework can be described as a cycle that starts with available knowl-

edge about an architectural candidate space, processes it, then produces new available

knowledge about the architectural candidate space. The new available knowledge

could be used to revise the representation of the architecture problem. This iterative

application of the ADG framework is called the ADG cycle.

The ADG cycle is presented in Figure 3-1. The tasks of the cycle are described

briefly in this section, then explained in more depth in subsequent sections. Figure

3-1 uses the OPM/OPN convention of objects (green rectangles) to represent steady

states and processes (blue ellipses) to represent transformations. The beginning of the

cycle starts with available knowledge. Available knowledge includes all information

known about the system and its context. Of specific interest to modeling in ADG are

decisions that need to be made and the relationships between them.

Available 
Knowledge

ADG 

Structural 
Information

Feasible 
Combinations 
of Decisions

RepresentingViewing

Simulating Structural 
Reasoning

Figure 3-1: The ADG reasoning cycle. Objects are represented by rectangles and processes
are represented by ellipses. The cycle begins with available knowledge and ends with
increased available knowledge.

The first process in the cycle is representing. This process transforms available

knowledge about the decision space into an ADG bipartite representation. This is

discussed in Section 3.3.

The second process is structural reasoning, which transforms an ADG into a

structured representation. This is achieved through one of several sorting algorithms

described in Section 3.4.

The third process is simulating, which generates the set of all feasible combina-

tions of decisions and evaluates them. This process is discussed in Section 3.5.

The last process is viewing the decision information. This process is a decision
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data visualization process. Representing decision-making information using the ADG

methodology is a way of generating new available knowledge. This is discussed in

Section 3.6.

3.3 Representing

Referring to Figure 3-1, representing, is the first process in the ADG cycle which

captures and transforms the available knowledge about the decision problem by en-

coding it in a bipartite graph. In ADG, a decision problem can be represented as a

collection of two kinds of things: system variables, which include decision variables

and property variables, and relations, which include the logical constraints and prop-

erty functions among those system variables. This breakdown of the two types of

nodes in an ADG is shown in Figure 3-2. ADG’s notation follows the convention

of square “objects” and elliptical “processes” from the Object-Process Methodology

(OPM)[Dor02] and Object Process Network (OPN)[Koo05]. System variables are

represented by objects and relations are represented by processes.

ADG Nodes

System
Variable Relations

Decision Variable
{alt1, alt2, ...} Property Variable Logical Constraint Property Function

Specialization

Object

Process

Legend:

Figure 3-2: An OPD[Dor02] of the two types of ADG Nodes: system variables and
relationships.

System variables can be split into two categories: decision variables, which are

controlled by the decision-maker, and property variables, which are derived from the

calculation of metrics. The domain of a decision variable is a finite set of alternatives

that can be assigned to that variable. Property variables can have either discrete

or real-valued continuous domains. An example of a decision variable is “number of

wheels for a car”, where the domain is the set of alternatives {3, 4}. An example of
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a property variable is “cost”, where the domain consists of continuous real numbers

greater than zero.

The relations between system variables can either be logical constraints, which are

propositional statements that specify the feasible assignments to two or more decision

variables, or property functions that specify a metric function to calculate property

variables.

The connection between the system variables and relations of the decision problem

can be represented in a bipartite graph. Bi-partite graphs have two types of nodes,

and connections are only allowed between nodes of different types. In this case, we

use the conventions of OPN and call the first type of node “objects”, and represent

them with squares, and the second type of node “processes”, and represent them with

ellipses. Objects in the ADG represent the two categories of system variables and

processes represent the two categories of relationships. This breakdown is shown in

Figure 3-2.

3.3.1 Formal Definitions

Below are four definitions: Architecture Decision Graph (ADG), and three types of

property functions.

Definition 1 (ADG) An ADG bipartite graph is defined by the tuple ADG = 〈D, M, L, F,E〉
where,

• D is a finite set of nD decision variables, D = {d1, d2, ..., dnD
}. Each decision

variable di has a domain consisting of a finite set of nAi
mutually exclusive

alternatives, Ai = {ai,1, ai,2, ..., ai,nAi
}, associated with it. An assignment of

decision variable di is written di = ai,k where ai,k ∈ Ai.

• M is a finite set of nM property variables, M = {m1, m2, ...,mnM
}. Property

variables are always associated with one specific property function in the set of

property functions, F (defined below).

• L is a finite set of nL logical constraints L = {l1, l2, ..., lnL
}. Logical constraints

are propositional statements written as a function of the set of alternatives, Ai

for one more more decision variables.

• F is a finite set of nF property functions, F = {f1, f2, ..., fnF
}. Property func-

tions are always associated with a specific property variable. Property functions
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relations are either scalar functions or discrete functions of the decision vari-

ables in D.

• E is a finite set of nE edges, E = {e1, e2, ..., ene} that connect the object nodes, D

and M to the process nodes, L and F . Because ADG is a bipartite graph, object-

object edges and process-process edges are not allowed. Edges are a directed edge

from a relation to system variable. Edges are defined by a tuple containing a

source and a target: ek = 〈source ∈ (L ∪ F ), target ∈ (D ∪M)〉.

Property functions can be defined in three different ways: additively separable,

multiplicitively separable, and non-separable. These terms are defined below:

Definition 2 (additive separability) A property function of n decision variables

in the set D is considered additively separable if it can be written as the sum of

functions with single arguments. This can be written as:

f(d1, d2, ..., dn) = f1(d1) + f2(d2) + ... + fn(dn) =
n∑

i=1

fi(di) (3.1)

Definition 3 (mutiplicative separability) A property function of n decision vari-

ables in the set D is considered mutiplicatively separable if it can be written as the

product of functions with single arguments. This can be written as:

f(d1, d2, ..., dn) = f1(d1)f2(d2)...fn(dn) =
n∏

i=1

fi(di) (3.2)

Definition 4 (non-separability) A property function is considered non-separable

if it is neither additively separable nor mutiplicatively separable

The purpose of defining different types of separable functions is because separa-

ble functions are easier to implement in the simulation part of the ADG process.

Additively and multiplicatively separable functions can be specified in a table. Non-

separable functions must be specified in a script. This will be explained further in

Section 3.5.
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3.3.2 Example Decision Problem

The representing, structural reasoning, and simulating aspects of ADG are best ex-

plained using an example decision problem. In this section, an example problem

is introduced which has five interconnected decisions, four logical constraints, three

property variables, and three property functions. This example problem will be used

throughout the chapter to supplement the explanation of the aspects of ADG.

Example: Set of Decision Variables

The five decisions in the example problem are given the generic names decision A,

decision B, decision C, decision D, and decision E. A simple way to represent the

decisions for the example is to use a morphological matrix, like the one shown in

Table 3-2. In this table, each decision is listed with a shortID, a long name, and the

units for the set of possible assignments. The shortID is used to identify the decision

variable in equations and visualizations. The set of possible alternatives is given in

the columns to the right of the decision. For example, Decision A has the possible

alternatives of 1, 2, or 3. Decision B has the set of possible alternatives of XS, small,

big, or XL.

Table 3-2: Set of five decisions for the example problem presented in a morphological
matrix.

shortID Decision units alt A alt B alt C alt D
decA Decision A none 1 2 3
decB Decision B none XS small big XL
decC Decision C none no yes
decD Decision D none ROUND square hex
decE Decision E none 0 1

Decision variables could also be entered into the ADG in other ways. One method

is to directly create decision variables using the object editor of the OPN-IDE (Object-

Process Network-Integrated Design Environment)[Koo05, KSC07c]. ADG’s software

implementation uses the OPN-IDE software as a graph visualization and modification

tool. Another way to enter the set of decision variables is to use a hierarchical

morphological matrix. A hierarchical morphological matrix allows decisions which

enable or disable other decisions to be represented in a hierarchical structure rather

than a flat structure, like the one shown in Table 3-2. This concept is discussed

further in Section 6.4.
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Example: Set of Logical Constraints

The five decisions in the example problem are connected by a set of relations, which

are made up of sets of logical constraints and property functions. The logical con-

straints in this example are listed in Table 3-4. Logical constraints are encoded using

OPN’s standard propositional logic syntax. The logical operators in OPN’s syntax

are defined in Table 3-3.

Table 3-3: Syntax of logical constraints.

symbol definition symbol definition
== logical equivalence > logical greater than
|| logical or < logical less than
&& logical and >= logical greater than or equal to
!= logical not equal <= logical less than or equal to

All constraints in Table 3-4 must hold (be equal to “true”) for a set of decision

variable assignments to be considered feasible. If one or more constraints is violated,

then the set of decision variable assignments is considered infeasible. The scope

column in Table 3-4 lists the subset of decision variables that are elements included

in the equation for each constraint.

Table 3-4: Logical Constraints for the example problem.

shortID scope equation
ABconstraint decA,decB (decA == 1) || (decA == 2 && decB == small) || (decA == 3 && decB >= big)
ACconstraint decA,decC (decA == 1) || (decA !=1 && decC == yes)
CDconstraint decC,decD (decD == hex && decC == no) || (decD !=hex) 
BCEconstraint decB,decC,decE (decC == no && decB <= small) || (decC == yes && decE == 1 && decB >= big)

One method for constructing the equations for a set of logical constraint is by using

constraint tables. Table 3-5 shows two constraint tables for the logical constraints

in the example problem. A constraint table indicates the feasible and infeasible

combinations of decision assignments for two decisions. An entry of 1 in the table

includes a feasible combination of decision assignments and an entry of 0 indicates

an infeasible combination.

The approach of using constraint tables for describing the feasible and infeasible

variable combinations is similar to the approach used in SpecTRM, The Specification

Tools and Requirements Method. References [LHR99] and [Lev00] claim that by using

tables to specify all allowed and disallowed combinations of states of the system, the
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specification process for critical software systems is less error prone. By building

a table, a human user can easily detect any combination of variable assignments

that have not been explicitly specified as feasible or infeasible, since the entry in

the table will be blank. Furthermore, the verification and validation process for the

specifications is simplified since a review team can examine and test each entry in the

matrix in a systematic way.

Table 3-5: Example logical constraint tables. The constraint equations in Table 3-4 can be
derived from these tables. Note that BCEconstraint has two tables since it has a scope
of three variables. The BCEconstraint table on the left applies when decC == no and
the BCEconstraint table on the right applies when decC == yes.

ABconstraint decA
decB 1 2 3
XS 1 0 0
small 1 1 0
big 1 0 1
XL 1 0 1

ACconstraint decA
decC 1 2 3
no 1 0 0
yes 1 1 1

CDconstraint decD
decC round square hex
no 1 1 1
yes 1 1 0

when decC==no: when decC==yes:
BCEconstraint decE BCEconstraint decE

decB 0 1 decB 0 1
XS 1 1 XS 0 0
small 1 1 small 0 0
big 0 0 big 0 1
XL 0 0 XL 0 1

Note that the process of translating a constraint table into the OPN syntax for a

logical constraint is not automated. The logical equation must be written manually

after the the feasible set of combinations of variable assignments is specified by the

decision-maker. However, it is feasible to automate this process. Section 6.4 discusses

this topic further. Automation of the translation of logical constraint tables into

logical constraint equations should reduce the chance of errors when specifying the

decision problem.

The table method works well for constraints with a scope of two variables. How-

ever, when there are three or more variables involved in the constraint, it is usually

easier to write the equation directly. (For example, the BCEconstraint in Table 3-4

has a scope size of three.)
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Example: Set of Property Variables and Property Functions

There are three property variables in the example decision problem: cost, risk, and

intensity. Each of these has an associated property function: costFunc, riskFunc,

and IntensityFunc. For illustrative purposes, these three property functions are con-

structed using one of each of the three different types of functions. Cost is an additive

separable function, risk is a multiplicative separable function, and intensity is a non-

separable function.

The two separable functions, costFunc and riskFunc can be described using a

“separable property table”, like the one shown in Table 3-6. In this case, the table

lists the constants that can be added or multiplied to calculate cost and risk. In this

case, all of the entries in the table are constants. However, these could also be more

complex functions, such as decA2 or log(decA).

Table 3-6: Example Separable Property Table.

CAT shortID Decision type alt A alt B alt C alt D
decision decA Decision A none 1 2 3
prop cost add 5 6 7
prop risk mult 0.99 0.95 1
decision decB Decision B none XS small big XL
prop cost add 1 2 3 5
prop risk mult 0.99 0.98 0.95 0.9
decision decC Decision C none no yes
prop cost add 2 1
prop risk mult 1 0.99
decision decD Decision D none ROUND square hex
prop cost add 10 5 30
prop risk mult 0.95 0.9 0.8
decision decE Decision E none 0 1
prop cost add 1 2
prop risk mult 0.99 0.98

An example of a cost calculation for decA=2, decB=small, decC=yes, decD =

hex, and decE=1 is:

costFunc(2, small, yes, hex, 1) = 6 + 2 + 1 + 30 + 2 = 41

For the same decision variable assignment, the risk calculation is:

riskFunc(2, small, yes, hex, 1) = (0.95)(0.98)(0.99)(0.8)(0.98) = 0.72

The third property function, IntensityFunc, is a function that is non-separable.

It is defined using the Jython scripting language in Listing 3.1. The Jython[PR02]

scripting language is used because it is a standard feature of OPN. The intensity
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function takes three decision variables for its input: decB, decC, and decD. The

output is a floating point number. This type of property function is included here as

a demonstration of OPN’s ability to evaluate arbitrary user-defined functions. The

Jython scripting environment can also be used to call evaluation functions in external

libraries or tools, such as Matlab or Mathematica.

Listing 3.1: intensity.py

import math as m;

def intensityFunc(decB ,decC ,decD):
## intensity calculation for example problem

intensity = 0.0;
x = (decB == small) * 4 + (decB == big) * 7 + \

(decB == XS) * 2 + (decB == XL) * 2;
y = (decC == no) * 1.2 + (decC == yes) * .7;
z = (decD == ROUND) * 1.05 + (decD == square) * \

1.1 + (decD == hex) * 1.5;

intensity = m.log(x) + m.log(y)*z;

return intensity;

Visualizing the example problem’s ADG

The three visualizations of the ADG representation are shown in Figures 3-3, 3-4,

and 3-5. The “complete view” in Figure 3-3 shows all variables and relations in

ADG’s tuple, ADG = 〈D, M, L, F, e〉. The second view, Figure 3-4, is the “logical

view”. It shows only decision variables, and logical constraints (property variables

and property functions are excluded). The third view, Figure 3-5, is the “properties

view” and it shows only decision variables, property variables, and property functions

(logical constraints are excluded). The logical view and property view are useful when

building an ADG because it reduces the number of objects and processes that appear

in the complete view.
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decision variable property variable

property functionlogical constraint

Figure 3-3: ADG example – Complete View. This is a visualization of the ADG bipartite
graph. System variables are green rectangles. The decision variables have a clear
background and list the set of alternatives in braces below the decision variable’s name.
The property variables are green rectangles with an orange background. Relations are
indicated by blue ellipses. The logical constraints have a clear background, and the
property variables have an orange background.
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Figure 3-4: ADG example – Logical View. This is an alternative visualization of the ADG
bipartite graph. In this case the property variables and property functions have been
removed. Only the decision variables and logical constraints appear. This view is useful
for visualizing only the logical constraint relations between decisions variables.
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Figure 3-5: ADG example – Properties View. This is another alternative visualization
of the ADG bipartite graph. In this case the logical constraints relations have been
removed. Three types of nodes remain: property variables, property functions, and
decision variables. This view is useful for visualizing only the structure of the property
value calculations.
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3.3.3 Section Summary

This section formally defined ADG’s bipartite formulation for a decision problem.

The five types of elements (four types of nodes and one type of edge) that make up

an ADG were defined. An example problem with five decision variables, four logical

constraints, three property variables, and three property functions was introduced.

Examples of additively separable, multiplicitively separable, and non-separable prop-

erty functions were included in the example decision problem.

The three types of ADG views were presented at the end of the section: the

complete view, the logical view, and the properties view. These views can be used as

alternate ways to visualize the connectivity of the decision and property variables.

The following section discusses analyzing the structure of the ADG.

3.4 Structural Reasoning

Referring to Figure 3-1, structural reasoning is the second process in the ADG

cycle. It transforms the information in the ADG bipartite graph into a sorted set

by reasoning about its structure. The purpose of structural reasoning is to increase

simulation performance and to identify properties of decision variables related to their

connectivity to other decision variables. The structural reasoning aspect includes the

methods and tools for reasoning about the structure of the decision problem itself.

This includes determining which order decision should be analyzed and the degree of

connectivity between different decision variables. Structuring is achieved by heuristic

sorting methods.

The ADG representation is intentionally an atemporal representation of a deci-

sion problem so that the decision ordering can be automated through analysis of the

structure of the problem, rather than requiring the order of the decision variables to

be pre-specified. By assigning the order as a result of computation, it can be reset

if the information in the ADG changes at a later stage in the architecting process.

This approach is similar to the graphical constraint problem approach (Section 2.3.3),

which is also un-sequenced, and different from the decision tree/influence diagram/se-

quential decision diagram approach (Section 2.3.2), which is requires a pre-specified

variable sequence.

Since ADG doesn’t require the decision-maker to assume that he knows which

decisions are made before others, the algorithms can determine a computationally
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efficient decision variable order in which to prepare the simulation. As described in

Chapter 1, a key challenge in architectural decision-making is that the many-to-many

relationships often lead to massive search spaces which are difficult to handle for both

humans and computers. A key concept in reducing the effort needed to explore these

search spaces is to reduce the amount of early branching of the search space.

Research in the field of autonomous reasoning has demonstrated that the effort

required to search a solution space can be reduced by picking certain variables orders

over others[RN02]. Specifically, in the field of constrained graph problem solving

(Section 2.3.3), heuristic methods have been identified which reduce branching in the

early stages of search. A heuristic is a (usually) simple method or algorithm which

approaches a good solution. In idiomatic English, a heuristic method for problem

solving is often called a “rule of thumb”. In general, heuristics methods provide no

guarantee of optimality or completeness. However, in practice, heuristic algorithms

are used to find satisfactory solutions with dramatically less effort than provably

optimal algorithms. In this thesis, two commonly used variable sorting heuristics

from the graphical constraint problem solving literature are adapted to work with

ADG’s bipartite formulation of decision problems.

The first heuristic that is adapted in this thesis is commonly called the “degree

heuristic.” The degree heuristic sorts decisions variables in the order of most con-

strained to least constrained. In graphical problem solving literature [RN02], the

degree of connectivity for a decision variable is usually measured by simply count-

ing the number of constraint equations that are included in the decision problem’s

logical constraint equations. This heuristic reduces branching in the decision space

because the alternatives for highly constrained decision variables are more likely to

be eliminated early in the decision problem analysis.

The second heuristic is often called the “minimum remaining values heuristic”.

This heuristic ranks decision variables in the order of fewest number of alternatives

to greatest number of alternatives. Since each alternative potentially creates a new

branch in the search space, it’s advantageous to delay the analysis of decision variables

with many alternatives until the end of simulation process.

There are two sorting algorithms for structural reasoning explained below: ADG-

sort1 and ADGsort2. Each one analyses the structure of the decision problem in order

to provide a computationally efficient sequence for the simulation aspect.
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3.4.1 ADGsort1

ADGSort1 (Algorithm 3.1) is the first sorting algorithm. It sorts the decision vari-

arbles by their degree of connectivity. This is modification of the “degree heuristic”

[RN02]. The input is to ADGsort1 an ADG and the result is an ordered list of de-

cision variables. Instead of using the degree of the node (defined as the number of

connected edges), the degree of connectivity is measured by counting the number of

decision variables connected through adjacent logical constraints.

A logical constraint is considered adjacent if it is connected via an edge to the

decision variable. A decision variable is “connected through an adjacent logical con-

straint” if it’s directly connected through an edge to the set of all adjacent logical con-

straints. In Figure 3-4, the decision variable decE is adjacent to the logical constraint

BCEconstraint. The decision variable decE is connected to the decision variables

decC and decB through adjacent logical constraints. Note that property variables are

not counted in this calculation because they do not effect branching in the decision

space. The algorithm for determining the degree of connectivity is given below:

Algorithm 3.1: ADGsort1

Data: ADG = 〈D, M, L, F,E〉
Result: degC, a map relating each decision in D with its degree of

connectivity.

forall decision variables di ∈ D do1

Initialize Set of connected decisions, Din,i = {};2

Initialize degree of connected decisions degCi = 0;3

forall logical constraints lj ∈ L connected to di do4

forall dk connected to lj do5

Din,i + dk;6

end7

end8

degCi = size(Din,i)− 1 ;9

end10

return degC;11

In the small example problem, the degree of connectivity can be calculated by

hand by referring to the logical view of the ADG in Figure 3-4. The degree of

connectivity of decA is 2 since it is connected to decC through ACconstraint and
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decB through ABconstraint. The degree of connectivity for decB is 3 because it is

connected to decA through ABconstraint, and decC & decE through BCEconstraint.

The remaining degrees of connectivity for the example problem are presented in the

following table:

Table 3-7: Results of ADGsort1 for the example problem

decision degree of connectivity
decA 2
decB 3
decC 4
decD 1
decE 2

The result of ADGsort1 implies the decision variable decC is the most connected

and decision variable decD is the least connected. The suggested order of evaluation

according to ADGsort1 is {decC, decB, decA, decE, decD}. Note that, alternatively,

the ordering {decC, decB, decE, decA, decD} could be the result of ADGsort1 since

decA and decE have the same degree of connectivity. In this thesis, this kind of ambi-

guity by using the sequence variables were inserted into the set of decision variables,

D. In this case decision variables were inserted in alphabetic order.

The performance impact of ADGsort1 on the simulation aspect of ADG is dis-

cussed below in Section 3.7.2.

3.4.2 ADGsort2

ADGsort2 (Algorithm 3.2) is an enhancement of ADGsort1. It adjusts the suggested

order of the decision evaluation by subtracting the number of alternatives for each

decision from the degree of connectivity. This approach is similar to combining the

“degree heuristic” and the “minimum remaining values heuristic” into a single heuris-

tic. The intent of ADGsort2 is to further reduce the amount of branching required in

the early stages of ADG simulation by pushing variables with many alternatives and

low degrees of connectivity to the end of the decision evaluation order. The algorithm

for ADGsort2 is given below:
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Algorithm 3.2: ADGsort2

Data: ADG = 〈D, M, L, F,E〉
Result: sort2rank, a map relating each decision in D with a measure equal to

a decision variable’s degree of connectivity minus its number of

alternatives.

Initialize degree of connectivity, degC, using ADGsort1;1

forall decision variables di ∈ D do2

Ai is the set of alternatives for di;3

sort2ranki = degCi − size(Ai) ;4

end5

return sort2rank;6

The result of ADGsort2 for the example problem is given in the table below.

For reference, columns for degree of connectivity and number of alternatives are also

included in the table.

Table 3-8: Results of ADGsort2 for the example problem

decision degree of connectivity # of alternatives sort2rank
decA 2 3 -1
decB 3 4 -1
decC 4 2 2
decD 1 3 -2
decE 2 2 0

In this case, the suggested order of evaluation according to ADGsort2 is {decC,

decE, decA, decB, decD}. Again, the ambiguity between decA and decB is resolved

using alphabetic order. The performance impact from using ADGsort2 is also dis-

cussed in Section 3.7.2.

3.4.3 Section Summary

This section described two sorting algorithms, ADGsort1 and ADGsort2, that provide

structural reasoning for a decision problem encoded in an architecture decision graph.

Structuring is used to determine an efficient ordering of decision evaluation.

Note that since ADG is a un-sequenced representation of a decision problem,

ordering the decision variables using one of these two algorithms is not required.
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It is possible to specify any arbitrary order and still satisfy the input needs of the

simulation algorithm. In subsequent sections, test data will demonstrate that that

simulation effort can be reduced by using one of these two sorting algorithms.

The next section describes the simulation aspects of the ADG methodology. In

Section 3.7.2, the impact of the two sorting algorithms is discussed.

3.5 Simulating

Referring to Figure 3-1, simulating is the third process in the ADG cycle which

transforms the structured decision problem into an executable OPN model. In this

part of the implementation, an executable OPN model is created from the system

variables and relations encoded in the ADG representation. Then, the OPN model is

executed to produce a set of feasible combinations of decisions and their calculated

properties.

This section is divided into two parts. The first part is OPN Compilation, which

describes the algorithms for the construction of an OPN model based on the ADG

bipartite graph. The second subsection is the description of model execution, which

produces the set of feasible combinations of decisions.

3.5.1 OPN Compilation

The structural reasoning process described in Section 3.4 can be thought of as a pre-

compilation method for the decision problem before it is compiled into an executable

OPN model. By structural reasoning the ADG before compilation, the construction of

the model can be done such that the execution of the OPN requires less computational

effort. Since the sorting methods ADGsort1 and ADGsort2 are heuristic methods,

they are not guaranteed to produce an efficient model. However, test results show

that they tend to produce more efficient models in terms of memory consumption

and computational time (see Section 3.7.2).

The construction of the OPN model from the ADG is an automated compilation

process. It is achieved by first constructing “blocks” of OPN models for each decision

variable. Examples of OPN blocks for decC and decE are shown in Figure 3-6. After

each of the blocks are connected, logical constraints and property functions are added.

When complete, this executable OPN model is used to enumerate and evaluate the

set of feasible combinations of decisions. Pseudocode for OPNBuild1 is presented in
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decC
{no, yes}

decC = no decC = yes

decE
{0, 1}

decE = 0 decE = 1

Figure 3-6: OPN building blocks for decC and decE. Decision variable decC can be assigned
decC=no or decC=yes. Decision variable DecE can be assigned decE=0 or decE=1.
These building blocks are assembled for each decision by the OPNBuild1 algorithm.
These two building blocks are highlighted by red-dashed boxes in Figure 3-7.

Algorithm 3.3.

An overview of the OPNBuild1 algorithm for building the OPN executable model

from an ADG is outlined below. The OPN model which is produced by the algorithm

for the example problem is shown in Figure 3-7.

Refering to the psuedocode on page 73, the first part of the algorithm is from lines

1 to 9. In the first operation, a blank OPN model is created. Second, an initialize

object, an initialize process, and final object are added to the OPN. Next, building

blocks for each decision variable are inserted into the new OPN in the sequence

of either ADGsort1, ADGsort2 or some other arbitrary decision variable ordering.

The last building block is connected to an object named “configuration complete”.

“Configuration complete” is then connected to a process called “metricCalc”. Then,

the property functions for each non-separable property are added to a process named

“metric calculation”. At this point all necessary objects, processes, pre-conditions

and post-conditions have been added to the OPN model.

In the next section of the pseudocode, lines 10 to 12, all logical constraints are

inserted into the OPN post-conditions at specific locations in the model. The locations

are chosen such that logical constraints are inserted into the earliest post-conditions

after every decision variable in the constraint’s scope has been assigned.

In the last section, lines 13-22, property functions are added to the model. Non-

Separable properties are inserted into the “metricCalc” process. Separable property

calculations are added to each process in which a decision variable is set.

The result of OPNbuild1 is returned on line 22. It is an executable OPN model

which can be used to enumerate and to evaluate all feasible combinations of decision

assignments. For the example decision problem, the final OPN is shown in Figure 3-7.
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Algorithm 3.3: OPNbuild1

Data: ADG = 〈D, M, L, F,E〉, and an ordering of decision variables in the
set D. It can be either degC from ADGsort1, sort2rank from
ADGsort2, or another total ordering of the decision variables

Result: OPNds, an executable OPN model of the decision space.
/* add all objects, process, pre-conditions and post-conditions

*/

Initialize a new OPN model, OPNds = 〈P, B, 〈obj, proc, pre, post〉〉 ;1

Add the initialize object I , initialize process initialize , and final object2

F to OPNds;
forall decision variables, di ∈ D do3

Insert a building block for each decision in the order derived from the4

pre-compilation. (An example of a building block for decision D1 is shown
in figure 3-6.) The connections to the next decision, D2 are shown here as
well. ;

end5

Connect the last building block to an object named “configuration complete”;6

Create a process named metricCalc ;7

Connect a pre-condition between configuration complete and metricCalc. ;8

Connect metricCalc to the end object, F;9

/* insert all logical constraints into post-conditions */

forall logical constraints, lj ∈ L do10

For each logical constraint, insert copies into the earliest post-condition11

after which all variables in its scope have been completely set. ;
end12

/* insert all property functions into processes */

forall property functions, fk ∈ F do13

/* note: property variable mk is associated with property

function fk */

if type of fj is non-separable then14

define the scope of fj as set Dscope ⊂ D ;15

insert the property function definition, fj(Dscope), into the global script;16

insert the function call mj = fj(Dscope)), into the metricCalc process;17

end18

else if type of fj is separable then19

If the property function is separable, insert the increment or multiplier20

in each decision assignment process, as appropriate. ;
end21

end22

return OPNds;23
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Initialize Process

OPN block for decE

OPN block for decC

non-separble metric
 calculation process

Figure 3-7: OPN Model for the example problem generated using the OPNBuild1 algo-
rithm guided by the sorting from the ADGsort1 algorithm. The OPN Blocks for decC
and decE from Figure 3-6 are highlighted with dashed lines.

3.5.2 Model Execution

The model can be executed using the OPN-IDE (OPN-Integrated Design Environ-

ment) software or by making a direct function call to the OPN kernel library. The goal

of model execution is a list of all consistent decision assignments and their properties.

This result of model execution, C, is called the set of pairs of feasible combinations

of decision variable assignments and their properties. For brevity, this set is informally

called “the set of feasible combinations of decisions” throughout this document.

Formally defined, C is a set of pairs, {〈D̃, M̃〉}. The first element of the pair is the
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set of feasible decision variable assignments, D̃. It is defined as:

D̃ = {d̃ = 〈d̃1, d̃2, ..., d̃nD
〉 |

∧
r=1,...,nL

lr(d̃) = true}, (3.3)

where, d̃ is a vector of decision variable assignments (defined in Section 3.3.1) that

satisfy all nL logical constraints in the ADG’s set of logical constraints, L. The symbol

∧ is the logical and operator.

The second element in the pair is the set of associated properties, M̃ . M̃ is defined

by:

M̃ = F (d̃) | (d̃ ∈ D̃), (3.4)

where M̃ is a set of values for all property variables in the ADG’s set of property

variables, M . Each property is calculated using the set of property functions, F , by

applying each function in the set to each element in the set of feasible combinations

of decision variable assignments, D̃.

An example of the set C is presented in Table 3-9. It contains the complete data

set of the 20 feasible combinations of decision variable assignments which satisfy all

the constraints in the example problem. These twenty combinations are a subset

of the entire combinatorial space of the five decisions, which has 144 combinations

(2× 4× 2× 3× 3 = 144). The remaining 124 combinations of assignments violated

at least one of the constraints in the set of logical constraints, L.

Note particularly that the decision assignment, decA=2 does not appear in Table

3-9. This is because the assignment decA=2 is never a feasible assignment, given

the logical constraints. Referring to the logical constraints table (Table 3-4), this

can be traced to the interaction between constraints ABconstraint, ACconstraint,

and BCEconstraint. ABconstraint requires that if decA equals 2, then decB equals

“small”. ACconstraint requires that if decA is not 1, then decC must be equal to

“yes”. However BCEconstraint does not allow the combination of decB is “small”

and decC is “yes”. Therefore, decA=2 is eliminated as a possibility.
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Table 3-9: The set of feasible combinations of decision variable assignments and their

associated properties (cost, intensity, and risk) for the example problem, C = {〈D̃, M̃〉}.
Note that one possibility, decA=2 does not appear in this table since is not consistent
with any combinations of the other four decisions. This means that all combinations
of decisions that include the decision assignment of decA=2 are infeasible.

decision variable assignments (D̃) properties (M̃)
decA decB decC decD decE cost risk intensity

1 small no hex 1 41.000 0.761 1.660
1 small no ROUND 1 21.000 0.903 1.578
1 XS no ROUND 1 20.000 0.912 0.885
1 small no square 1 16.000 0.856 1.587
1 XS no hex 1 40.000 0.768 0.967
1 small no square 0 15.000 0.864 1.587
1 XS no square 1 15.000 0.864 0.894
1 small no hex 0 40.000 0.768 1.660
1 small no ROUND 0 20.000 0.912 1.578
1 XS no hex 0 39.000 0.776 0.967
1 XL yes ROUND 1 23.000 0.821 0.319
1 XS no square 0 14.000 0.873 0.894
3 XL yes ROUND 1 25.000 0.830 0.319
1 XL yes square 1 18.000 0.778 0.301
3 XL yes square 1 20.000 0.786 0.301
3 big yes square 1 18.000 0.830 1.554
3 big yes ROUND 1 23.000 0.876 1.571
1 XS no ROUND 0 19.000 0.922 0.885
1 big yes ROUND 1 21.000 0.867 1.571
1 big yes square 1 16.000 0.821 1.554

Overview of OPN’s Execution Semantics

Precise details of OPN’s syntax and semantics as well as the specification for the

OPN-IDE software are available in References [Koo05, KSC07c, KSC07b, KSC07a].

For reference in this thesis, a brief summary of the execution semantics of OPN are

given below.

The execution semantics of OPN are derived from the concepts in the Petri-net

literature [Pet62, Pet81]. Data about the set of feasible designs are carried through

the model in a data structure called a token. Figure 3-8 shows an annotated OPN

diagram showing two objects and one process. In this figure, the tokens are indicated

by small circles. Data stored in the tokens are transformed by the process.

A token represents a communication or computation event. When the execution

of the OPN model begins the first token is “fired” from the object labeled I. The
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data in the token is applied to all feasible paths leaving the object. An object is a

data storage abstraction. An object may store zero or more tokens. The directed

arcs leaving an object are called pre-conditions. A pre-condition may contain a rule

which can be evaluated to either true or false, depending on the properties stored in

the token. If and only if the pre-condition is evaluated to true, the token is allowed

to proceed to the next process.

Processes in an OPN transform the data stored in a token. In Figure 3-8, there

are two tokens stored in the object I. One token has the data {x = 1} and the other

has the data {x = 4}. The two token are transformed by the process which has the

instructions {x = x + 1; y = 2}. This transformation results in new tokens with the

new data {x = 2, y = 2} and {x = 5, y = 2}. However, each new token must pass a

post-condition before it is stored in the next object.

A post-condition is a directed arc that connects a process to an object. In Figure

3-8, the post-condition has the rule: x < 3. In this case the token with the data

{x = 5, y = 2} will be eliminated since x < 3 is false. Post-conditions are semantically

the same as pre-conditions; a rule can be stored in a post-condition that must be

evaluated to true for the token to be stored in the next object.

x<3
{x=x+1;y=2}__I

pre-condition post-condition
__F

Token:
{x = 1}

Token:
{x = 4}

Token:
{x = 2; y=2}

ProcessObject Object

Figure 3-8: An annotated diagram of a simple OPN. Tokens are depicted as circles in this
diagram for illustrative purposes. Objects are data storage abstractions and Processes
are data transformation abstractions. Pre- and Post-conditions contain propositional
rules which must evaluate to ‘true’ for a token to proceed through the network

3.5.3 Section Summary

This section described how simulation of a decision problem represented in ADG is

achieved. The simulation process is composed of two sub-processes: OPN compiling

and model execution.

OPN compiling begins after running the structural reasoning algorithms (either

ADGsort1 or ADGsort2). Next, the OPNbuild1 algorithm constructs “OPN blocks”

containing objects that represent decisions variables and processes that represent the

assignment of each of the decision variable’s alternatives. These are inserted into an
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executable OPN model of the decision space, called OPNds. Next, property functions

and logical constraints are added to the model automatically. The OPN model is built

in such a way that it is guaranteed to terminate, since there are no cycles allowed

in the model. After OPN compilation, this section explained how the OPN model is

executed to to produce the set of feasible combinations of decisions. Properties are

calculated for each of the feasible combinations.

The following section presents two methods for representing (viewing) the data

output by the simulation.

3.6 Viewing

Referring to Figure 3-1, viewing is the fourth process in the ADG cycle which trans-

forms the feasible combination of decisions into new available knowledge. The product

of simulating a decision problem using ADG is a list of possible combinations of de-

cisions and their calculated properties. For the example problem the list (Table 3-9)

contains 20 possible combinations of assignments for the five decisions as well as their

cost, risk, and intensity properties. In order for this information to be useful in the

decision-making process, it must be presented in a way that is meaningful to the ar-

chitect. The overall goal of viewing the simulation data is to improve the architect’s

ability to comprehend the space of feasible decisions.

This section discusses two of the possible views of the decision data. The first

is a “decision space view”, which plots the decisions in the two-dimensional space

measuring their connectivity versus sensitivity to properties. The second view is a

“Pareto front view”, which is a plot indicating the sub-set of feasible solutions which

are non-dominated in terms of pairs of metrics. Other views of the data are possible;

some of these are discussed in Section 6.4.

3.6.1 Decision Space View

The decision space view is a plot measuring the impact of decision variable on the

decision space. In practice, the words “high-impact decision” could have two different

meanings: 1) the decision strongly influences the properties of the system (such as

cost, performance, or risk) or, 2) the decision strongly affects the feasible set of

alternatives for other decisions. Using ADG, a decision’s impact on the system can
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measured by two different metrics, which correspond to these two definitions of high-

impact: property variable sensitivity and degree of connectivity.

A measure of the property variable sensitivity can be calculated using a modified

version of “main effects” analysis that is used in the design of experiments (DOE)

literature [BHH05]. The main effect is a measure of the average change in system-

wide properties produced by changing one variable in a decision problem. It is used

to determine which decision variables have the strongest effect on the metrics of the

system in terms of delta from a reference configuration.

The traditional formulation of main effects is limited in several ways. Main effects

analysis assumes there is a baseline design and the decision variables are modified

one at a time. The modification of a decision variable is limited to just two “levels”

of assignments and can only be changed one variable at a time. Also, main effects

analysis assumes that the system response to the change in a variable is linear. In

other words, it is assumed that all variable can be independently modified without

changing the feasible space of system configurations.

Since ADG allows more than two “levels” of assignments to decision variables,

and explicitly models variable interaction, a modification to traditional main effects

analysis is necessary to measure the property variable sensitivity of decisions. The

property variable sensitivity (PVS) is calculated for each property and each decision

over the set of feasible combinations of decisions and their associated properties,

C = {〈D̃, M̃〉}. The equation for PVS is:

PV Smj ,dk
=

∑
ak,i∈Ãk

|E(mj)− E(mj|dk = ak,i)|
|Ãk|

(3.5)

where:

• PV S is the property variable sensitivity. PV Smj ,dk
is read as the “property

variable sensitivity of property mj to changes in the assignment for decision

variable dk.”

• mj is of one of the nM property variables.

• dk is one of the nD decision variables.

• Ãk ⊆ Ak is the set of decision variable assignments for dk that exist as assign-

ments to decision variables in the feasible set of decision variable assignments D̃.

For example: for decision variable decA, AdecA = {1, 2, 3}, but ÃdecA = {1, 3},
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since the assignment decA=2 does not exist in the feasible set of decision vari-

able assignments.

• ak,i is one of the nAk
alternatives for decision variable dk. The expression ak,i ∈

Ãk indicates that ak,i is a member of the set Ãk.

• E(mj) is the mean of property mj over all feasible combinations of decisions in

C.

• E(mj|dk = ak,i) is the mean all feasible combinations restricted to include the

only combinations with decision assignment dk = ak,i.

• |Ãk| is the cardinality (number of elements) of the set Ãk.

In simpler terms, PVS is a measure of the average magnitude of change in a property

that occurs when changing the assignment of particular decision variable.

As an example, the property variable sensitivity of decision A on the inten-

sity property, PV Sintensity,decA, can be calculated using the the raw data in Table

3-9. First, the overall mean for intensity is: E(intensity) = 1.131. Next, the

mean when A=1 and A=3 are calculated: E(intensity|decA = 1) = 0.936, and

E(intensity|decA = 3) = 1.180. These numbers are applied to Equation 3.5:

PV Sintensity,decA =
|1.131− 0.936|+ |1.131− 1.180|

2
= 0.122

Note that there are three possible assignments for decA: AdecA = {1, 2, 3}. How-

ever, since decA=2 was not contained in any element in the feasible set of decisions,

C, it was included in the set ÃdecA, and therefore was not included in the calculation

of PV Sintensity,decA.

The numerical value of the PVS for intensity to decision A is only meaningful

when compared to the PVS for the other decisions in Table 3-10. For example, the

sensitivity to intensity of decision A is greater than decision D or E and less than

decision B and decision C. This means that a change in the assignment of decision

B will potentially vary the intensity property over a wider range than decision A, on

average. Qualitatively, by this measure, decision B has a potentially higher impact

on intensity than decision A.

One of the key advantages of calculating the property variable sensitivity using

Equation 3.5 is that it is calculated over the feasible decision space and variable
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Table 3-10: Decision view report for the ADG example problem. The decision view report
also includes eliminated alternatives.

DECISION VIEW REPORT:
longName shortName degConnectivity cost risk intensity
Decision A decA 2 1.0625 0.0058 0.1220
Decision B decB 3 2.2500 0.0157 0.4865
Decision C decC 4 2.2500 0.0112 0.1627
Decision D decD 1 8.4000 0.0391 0.0909
Decision E decE 2 0.9286 0.0095 0.0930

ELIMINATED OPTIONS:
decA=2 appears 0 times.

Sensitivity

interactions are taken into account. In traditional sensitivity or mean effects analysis,

it is assumed that the model is linear and all decision variable assignments are taken

into the calculation without regard to whether or not they are feasible.

The second metric of the potential impact of a decision variable is the degree

of connectivity. This is easily calculated using ADGsort1 (Algorithm 3.1). It is a

measure of how many other decision variables are connected to a particular decision

though constraints. This can be considered a first order measure of the impact of one

variable on another. A change in the assignment of a decision variable with a high

degree of connectivity will potentially affect a larger set of alternatives of connected

decisions, in comparison to a decision with a lower degree of connectivity. A decision

with a degree of connectivity of zero cannot affect other decisions.

The two metrics, degree of connectivity and property variable sensitivity can be

plotted on orthogonal axes in the decision space view. The decision space view is a

way to visualize both measures of decision impact in one diagram. On the vertical

axis is a measure of property sensitivity of each decision. On the horizontal axis is

the measure of the degree of connectivity. Examples of decision space view are in

Figures 3-9, 3-10, and 3-11.
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Figure 3-9: Decision space view for cost property.
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Figure 3-10: Decision space view for risk property.
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Figure 3-11: Decision space view for intensity property.
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Figure 3-12: Decision space view – four quadrants.
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A guide for the interpretation of the decision space view is show in Figure 3-

12. The plot can be divided into four basic quadrants with which a decision-maker

prioritize decisions. The four quadrants in Figure 3-12 are a qualitative measure of

the different types of decisions in a systems architecture. It can be interpreted as a

way to guide the order of “choice activity” in decision making. The quadrants can

be interpreted as follows:

The upper right quadrant (I) contains decisions which are both sensitive and

strongly connected. These decisions are connected to the highest number of other

decisions and have the highest impact on the system properties. The decisions which

lie in this quadrant for one or more of the properties should receive the most attention

from the decision maker. It is likely that these decisions should be resolved early in

the architecting process.

The upper left quadrant (II) constrains decisions which have a high measure of

property variable sensitivity but are weakly connected to other decisions. A change

in these decisions may influence system properties strongly, but will not influence

many other decisions. The decisions that lie in this quadrant can be analyzed largely

independently from the other decisions. Decisions in this category should be given

the second highest priority.

The lower right quadrant (III) contains decisions which are do not strongly affect

properties, but are strongly connected to other decisions. According to the property

variable sensitivity, decisions in this quadrant are not likely to have a high impact on

system properties. The decision maker can wait to resolve these decisions until the

highly sensitive ones are resolved. The decision-maker should give the properties in

this category the third highest priority. These decisions could be made late in the

design phase, since they are more likely to be constrained by other decisions and do

not have a strong impact on system properties.

The lower right quadrant (IV) contains decisions which are neither impactful in

terms of property variable sensitivity nor in terms of connectivity to other decisions.

The decisions in this quadrant could be left until the end of the decision-making

process, since they are largely independent of other decisions. Decisions in this quad-

rant do not have a strong, direct effect on system properties or the set of feasible

alternatives of other decisions.

It is important to note that the categorization of decisions in these quadrants is

a first order estimate of how the decision variables should be prioritized. The two
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Table 3-11: Decision Category Chart

Category cost risk intensity
I: sensitive & strongly 
connected

decB

II: sensitive, but weakly 
connected

decD decD

III: insensitive & strongly 
connected

decB, decC decB, decC decC

IV: insensitive and weakly 
connected

decA, decE decA, decE decA, decD, decE

measures of impact, property variable sensitivity and degree of constraint, should not

be considered precise, monotonic measures of how each decision in the complete set of

decisions should be handled. They should be considered an estimate of how a systems

architect could organize the in-depth analysis of these decisions.

The decisions in an ADG can be categorized in a decision category chart after

simulation is complete. An example of this chart, which uses the results plotted in

Figures 3-9, 3-10 and 3-11, is shown in Table 3-11.

3.6.2 Pareto Front View

A second way to view the simulation data is called a Pareto front plot. Pareto front

plots are commonly used in the field of multi-objective optimization [PW00]. The

Pareto optimal set is the set of non-dominated points in a set of data measured by at

least two metrics[Par69, Par97]. In the case of the ADG methodology, the set of data

is the set of all feasible combinations of decisions, C. An element ci ∈ C is considered

a member of the Pareto set if there is no other cj ∈ C such that cj is better than ci

in terms of all properties. The points along a two-dimensional Pareto front can be

interpreted as “the best performance for metric A, given that metric B is constant”

or “the best performance for metric B, given that metric A is constant.”

Pareto fronts are sometimes called the “efficient frontier”. The term efficient is

used to mean that for all points on the Pareto front, it is not possible to improve

one metric of interest without simultaneously worsening at least one other metric of

interest. Pareto fronts capture the notion that the set of “best” options for systems

which are measured by properties which may be in opposition to each other can only

be characterized as tradeoff between those properties.

Figure 3-13 contains three Pareto fronts for the example problem; cost vs. risk,

cost vs. intensity, and risk vs. intensity. The U with a circle around it is the called
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the “utopia point”. This point signifies the direction of the most desirable property

values for the two property variables. The Pareto front is indicated by a red dashed

line. All points which are not included in the set of points on the Pareto front are

considered “dominated” points.

The set of feasible combinations of decisions identified using a Pareto front could

be used as a way to select a subset of alternatives for decisions which result solutions

“near” the Pareto front. A nearness metric that is appropriate for a given problem

would have to be defined by the decision-maker. By doing this, the decision-maker

could prune the decision space to remove sub-optimal alternatives before restarting

the ADG analysis cycle (3-1). This is discussed further in Section 6.4.
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Figure 3-13: Pareto fronts for example problem. The points in the pareto plots correspond
to the 20 feasible combinations of decision assignments in Table 3-9. The red dashed
line is the pareto front. The U with a circle around it indicates the “utopia direction”.
Note that higher is better for the risk property.
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3.6.3 Section Summary

This section presented two different ways to represent decision support data by view-

ing the data generated by simulating an ADG. The first view presented in this section

was the decision space view. The decision space view is a two-dimensional scatter

plot of the set decision variables which illustrates each variable’s property variable

sensitivity versus each variable’s degree of connectivity. The decision space view can

be used to partition the set of decision variables into four categories. These catego-

rizes can be used to prioritize analysis of decision alternatives in an interconnected

architectural decision problem.

The second view presented in this section was the Pareto front view. The Pareto

front view is useful for determining which decisions lie in the non-dominated set. By

analyzing a Pareto front view, decision alternatives that lead to dominated solutions

can be identified, and potentially eliminated from the decision space.

3.7 Properties and Performance of the ADG Framework

This section analyses the properties and performance of the ADG methodology. There

are two subsections. The first subsection discusses the properties of ADG simulation

algorithm. The second subsection discusses the impact of the ADGsort1 and ADG-

sort2 structural reasoning algorithms on simulation performance.

3.7.1 Properties of ADG Simulation

ADG’s simulation algorithm can be considered a search algorithm over a combinato-

rial space. According to Russell and Norvig[RN02], desirable properties of a search

algorithm are:

• Property 1: A guarantee that the algorithm will terminate in finite time.

• Property 2: A guarantee that if a solution is returned by the algorithm, it is a

valid solution.

• Property 3: A guarantee that if a valid solution exists, it will be returned by

the algorithm.
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These three properties can be guaranteed for ADG only under the condition that

any property function in the ADG that is written in Jython also has these three

properties.

The first property is a guarantee that the algorithm will terminate in finite time.

ADG’s simulation algorithm is guaranteed to terminate in finite time since OPNbuild1

(Algorithm 3.3) can only produce an OPN model which terminates in finite time.

In general, OPN models do not necessarily terminate in finite time. Since OPN

is a turing complete language, infinite cycles are permitted. However, Architecture

Decision Graph uses the OPNbuild1 (Algorithm 3.3) to construct a model that is

finite and acyclic. Since it is acyclic, all possible traces through the OPN model

contain a finite number of object and processes. Each trace through the OPN model

can be computed in a finite number of steps. Therefore, ADG’s simulation algorithm

is guaranteed to terminate.

The second property guarantees that when a solution is returned, it is a valid

solution. ADG’s simulation algorithm builds and executes an OPN model in order

to return a set of the feasible combinations of decision assignments. An element

in this set of decision assignments is considered valid if and only if it satisfies

each and every logical constraint specified in the ADG. The OPN model compiled

by OPNbuild1 (Algorithm 3.3) ensures that every element in this set is valid by

embedding the logical constraints in post-conditions in such a way that all paths

through the model to the final token collection object (called F) must be checked

against each and every logical constraint. Therefore, it is not possible to return a

combination of decision assignments that is not valid. Therefore, ADG guarantees

that when a solution is returned, it is a valid solution.

The third property guarantees that if a valid solution exists, then ADG’s simu-

lation algorithm will return that solution. Given sufficient computation resources,

ADG has this property as well. As stated above, in the discussion of the second prop-

erty, solutions are added to the set of feasible combinations of decision assignments

if and only if they have been checked against each and every logical constraint.

Furthermore, there are no other pre-conditions or post-conditions in the OPN model

that might contain other constraints that could eliminate a token that contains a

valid solution. Additionally, as discussed above, ADG is guaranteed to terminate.

There are no operations in the algorithm that could prevent a valid solution from

being returned. Therefore, a valid solution, if it exists, will be returned.
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In summary, ADG has these three properties, under the conditions that all prop-

erty functions written in Jython also have these three properties and there are suffi-

cient computational resources available for simulation of the decision problem.

3.7.2 Impact of Structural Reasoning on Simulation Performance

The impact of the structural reasoning algorithms on the performance of ADG simu-

lation can be measured by comparing them to performance of ADG simulation using

all possible decision variable orderings. This was possible for the example problem

in this Chapter, since its five decisions have 120 different possible variable orderings

(5! = 120).

The results of the performance test are plotted in Figure 3-14. Note that there

are two vertical axes in Figure 3-14: time measured in seconds and space measured in

number of tokens. The results were sorted by number of generated tokens in each test

run. This forced the blue curve corresponding to number of tokens to be monotonic.

Referring to Figure 3-14, the left vertical axis corresponds to time in seconds

elapsed to reach a solution. The points measured by this axis are the red, square

data points. Computational time was measured by executing the OPN model on an

Apple Powerbook G4/1.5GHz/2GB running Mac OSX 10.4 and JVM 1.5. Execution

time can only be measured in one second increments since this is the update cycle of

the OPN token scheduler.

Referring to Figure 3-14, the right vertical axis corresponds to number of tokens

generated. The points measured by this axis are the blue, diamond data points. The

number of tokens generated is a proximate measure of memory consumption. The

OPN token scheduler generates a new token to save its state history whenever any

token is transformed by a process (see [Koo05] or Section 3.5.2 for details).

By doing a complete enumeration of all 120 possible variable orderings, this test

demonstrates the performance of the heuristic ordering algorithms ADGsort1 and

ADGsort2 for this specific decision problem. The performance of the OPN model

when sorted by ADGsort1 and ADGsort2 is indicated by the green vertical lines in

Figure 3-14.

The ordering produced by ADGsort1, {decC, decB, decA, decE, decD} , completed

the simulation after generating 66 tokens in 3 seconds. Measured by number of

tokens produced this was equal to eighth best possible variable ordering out all all

120 orderings in this test. The ordering generated by ADGSort2, {decC, decE, decA,
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Figure 3-14: OPNBuild1 Performance. This is a 2-axis vertical plot, time [sec] and
space [tokens] which compares all 120 possible orderings of the five decisions. The
performance of the orderings produced by ADGsort1 and ADGsort2 are indicated with
green vertical lines.

decB, decD}, completed the simulation after 62 tokens in 2 seconds of computational

time. Measured by number of tokens produced, ADGsort2’s order was equal to best

possible variable ordering in this test out all 120 orderings in this test.

Since ADGsort1 and ADGsort2 are heuristic variable ordering algorithms, there is

no guarantee of optimality of the order. However, in this case, both sorting routines

produced decision variable orderings in the top 10% of all possible orderings, in terms

off tokens genereated. (Additional tests of ADGsort1 and ADGsort2 are in Section

4.6.1 and Chapter 5.)

Worst Case Number of Tokens

Worst case upper bounds on the number of tokens generated by the OPN model can

be calculated by ignoring tokens eliminated by the logical constraints. This subsection

describes two equations for calculating the upper bounds on the number of generated

tokens. The first equation does not take variable order into account. The second
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equation depends on decision variable order.

The worst case upper bound the number tokens generated by the OPN model

produced by OPNbuild1 can be calculating using the following equation:

number of tokens ≤ 1 +

nD∑
k=1

|Amax|k +

nD∏
k=1

|Ak|, (3.6)

where |Amax| is the size of the largest set of alternatives for all decisions in D, nD is

the number of decision variables. The first term in the equation, 1, is the first token

generated after executing the initialize process. The second term in the equation,∑nD

k=1 |Amax|k is the number of tokens generated by the part of the OPN model which

evaluates combinations of decision variable assignments against the logical constraints

to produce D̃. This term is an upper bound on the maximum number of tokens that

could be generated if the logical constraints were suspended. The third term of

the equation,
∏nD

k=1 |Ak|, is the tokens generated by the metric calculation process,

which could have as many tokens as the complete combinatorial space of the decision

variables.

Using Equation 3.6, the upper bound on the number of generated tokens for the

example problem is:

1 + (4 + 42 + 43 + 44 + 44 + 45) + (3× 4× 2× 2× 3× 2) = 1909 tokens

Note that the actual worst case number of tokens generated was 122 tokens (See

Figure 3-14).

A tighter upper bound on the number of tokens can be calculated when an ordered

set of the decision variables in D is used. Instead of using |Amax| to calculate the size of

the combinatorial space, the actual size of each decision variables set of alternatives

|Ak| is used. The following equation is an upper bound for the number of tokens

generated using an ordered set of decision variables:

number of tokens ≤ 1 +

nD∑
j=1

(
j∏

k=1

|Ak|

)
+

nD∏
k=1

|Ak|, (3.7)

where the integers j = (1, .., nD) are the indexes of an ordered set of the decision

variables in D, and Ak is the set of alternatives for decision variable dk. The second

term on the right hand side of Equation 3.7, is an upper bound on the number of
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tokens generated by each branch of the OPN model. The upper bound on the sum

of the tokens generated by each branch is reduced if the decision variables with a

smaller number of alternatives are earlier in the order.

Using Equation 3.6, and the order from ADGsort1, the tighter upper bound on

the number of generated tokens for the example problem is:

1+

(2 + 2× 4 + 2× 4× 3 + 2× 4× 3× 2 + 2× 4× 3× 2× 3)+

(3× 4× 2× 2× 3× 2)

= 515 tokens

Note that the actual number of tokens generated by the OPN using ADGsort1 as a

variable ordering heuristic was 66 tokens, since some alternatives were eliminated by

logical constraints.

3.8 Summary

ADG is a representation of an architectural candidate space. It explicit represents

the candidate space as a graph of interconnected architectural decision variables,

logical constraints, property variables, and property functions. It was designed with

four assumptions: 1) the steps of architecture refinement can be characterized as

decisions applied to the architecture space, 2) decision variables have a finite set of

mutually exclusive alternatives, 3) continuous decision variables can be approximated

using discrete variables, and 4) a decision-maker is not required to specify a decision

variable order prior to analyzing the decision space.

Section 3.3 describes the representational primitives of ADG. They are designed

to be explicit answers to questions that a decision-maker is faced with:

Table 3-12: Mapping of architecting questions to ADG’s primitives.

Question ADG Primitives
What are the decisions? Decision Variables.
How will I evaluate them? Property Variables.
How are they interconnected? Logical Constraints and Property Functions.
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Section 3.4 describes ADG’s structural reasoning algorithms. ADG is intention-

ally designed to be an atemporal (declarative) representation of a decision problem.

By doing this, the structure of a decision problem can be used to determine the or-

der of decision variables rather than the requiring a decision-maker to specify the

order manually. ADG provides two structural reasoning tools, ADGsort1 and ADG-

sort2, which determine a decision ordering based on degrees of connectivity and the

size of the a decision variable’s assignment domain. In practice, this works well for

architectural decision problems, which usually do not follow a strict-time sequence.2

Section 3.5 describes how ADG uses the OPN kernel for enumerating and simulat-

ing feasible sets of decisions. Although OPN has been shown to be a powerful systems

architecting tool in practice, it has also been challenging for systems architects to use

effectively. Using ADG, an architect can explicitly model decision variables and con-

nections, then automatically build an OPN model to enumerate and simulate feasible

sets of decisions. The advantages of this are: 1) systems architects do not have to

understand OPN’s Petri-net-like environment, 2) ADG can automatically re-build a

new, efficient model as the problem definition changes over time, and 3) although

there is no guarantee of the efficiency ADG’s structural reasoning algorithms, in all

available test cases, it produces OPN executable models that are within the best 10%

of all variable orders tested.3

2Some additional commentary on this issue is available in Chapter 4, where a mixed temporal
and a-temporal problem is examined.

3additional test cases are shown in Chapter 4 and 5.
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4
Apollo Architecture Study

4.1 Overview

This chapter presents a retrospective study of architectural decisions made for the

Apollo lunar exploration program of the 1960’s. This example of a systems archi-

tecture problem was chosen for three reasons. The first reason is that architecting

the Apollo mission was and is still considered a “tough problem” (see R. Seamans,

Project Apollo: The Tough Decisions [Sea05]). Arguably, the Apollo project to land

a man on the Moon and return him safely to Earth was one of the most ambitious

and unprecedented engineering challenges ever conceived. It is a benchmark problem

in systems architecting, and an example of H. Simon’s definition of “unprogrammed”

decision-making (see Section 1.2).

The second reason for choosing this study is that historical evidence [Sea96,

SKK05, BGS79, Han95, MC04, EMB+78, Kin05, Hil04] shows that progress in en-

gineering the Apollo program was limited until one critical decision was made: the

so-called mission-mode decision. More than two years were spent iterating through

many possible mission architectures until June 7, 1962. On that day, the decision to

choose Lunar Orbit Rendezvous (LOR) (Figure 4-1) as the Apollo mission mode1 over

the other possible options set the whole program on a rapid path to the successful

moon landing in 1969 [Hil04]. Selecting the mission-mode enabled the program to

rapidly move forward with the detailed design and development of the spacecraft.

The LOR decision is an excellent example of how identifying and making the most

import decisions early in a systems architecting project can lead to the success of the

program.

1A mission-mode is defined as the number, types, destinations, and interactions of vehicles for a
space mission [SKC05a].
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Figure 4-1: John C. Houbolt explaining the mission-mode known as Lunar Orbit Ren-
dezvous (LOR). [credit: NASA photo]

The third reason for choosing the Apollo decision problem is that a comparison

can be can be made between the ADG approach to studying the Apollo decisions

and the motion language approach for studying the same problem used in Benjamin

Koo’s thesis [Koo05]. Koo used an earlier version of OPN to construct a decision

model for Apollo in OPN’s Petri-net-like structure of objects and processes.

The primary objective of this chapter is to demonstrate that ADG can be applied

to a realistic architecting problem. Specifically, this chapter shows that ADG can be

used to identify and prioritize decisions for the Apollo project using contemporary

information from the early 1960’s. A secondary objective of this chapter is to present

guidance for a systems architect using ADG. Section 4.2.1 provides four general guid-

ing principles which can be used to transform an architecting problem into a decision

problem.

The outline of this chapter mirrors the outline of Chapter 3. The four processes
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of the architecting decision graph cycle (Figure 3-1) are addressed in order: Repre-

senting, Structural Reasoning, Simulating, and Viewing. The chapter concludes with

three discussions: A discussion of the impact of the structural reasoning algorithms

on the simulation performance, a discussion comparing Koo’s approach to the ADG

approach, and a summary of the findings of this chapter.

4.2 Representing

Referring to the ADG cycle presented in Figure 3-1, the first process is representing

available knowledge about the system by encoding it using an ADG. In order to

simplify the initial presentation of ADG, the discussion of the representing process in

Chapter 3 only briefly describes the practical issues involved in developing an ADG

model for a real architecting problem. This chapter addresses that issue in more depth

by first presenting four general principles for representing an architectural space as a

set of decisions. These principles are applied to the Apollo architecting task.

4.2.1 General Principles for Formulating a Decision Problem using ADG

This subsection presents general guidelines for modeling an architectural problem

using ADG. Four guiding principles for developing the set of decision variables repre-

senting an architectural configuration space are presented below. These four principles

were developed by leveraging general systems architecting principles [Cra07, Rec91,

MR02], the guidance outlined in previous research using Object Process Network

(see Section 2.3.4) [SKC05a, SKC06, SKC07], as well as experience using ADG as an

architecting tool.

1) Set the Boundaries: The first guiding principle is to set the boundaries of

the architectural space under consideration. This principle is generally applicable to

any enumerative method which searches a design space because it is impossible to

comprehensively search and evaluate an infinitely large configuration space of archi-

tectures within finite time. In order to complete the analysis without exceeding the

amount of available computational resources, reasonable bounds must be set on the

space of architectures which will be considered.

Analysis of an architectural space using ADG requires that the decision-maker or

architect have at least some knowledge about the system before any decision model

can be developed. The task of pre-selection of categories of architectures under consid-
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eration necessarily relies on the judgement of the architect. It requires a preliminary

understanding of what types of architectures would be reasonable and which ones

would be unreasonable.

As a rule of thumb, it is often advisable to start formulating the problem using

“tight” boundaries by only considering a limited set of alternatives in early studies.

In successive studies, these boundaries can be “loosened” to allow the consideration

of additional architectures.

2) Decision Variables Should be Inputs to Property Functions: The

second guiding principle is to develop the set of property functions for evaluating the

system of interest before trying to develop the set of the decision variables. Experience

has shown that by first developing the property functions that would be needed

to evaluate the system, the decisions variables that are needed as inputs for these

property functions become more evident.

The roots of the second principle can be found in the systems architecting litera-

ture. It is generally accepted that the “value proposition” or “value equation” for a

system is a relatively stable, high-level abstraction for a system [Rec91, Cra07]. By

focusing attention on how a system delivers value, the set of elements of that system

which contribute to delivering value can be identified. For ADG analysis, the “value

proposition” is the ability to calculate the properties of interest. The elements of

the system that enable value delivery are the set of decisions which are inputs for

the property functions. The basic modeling assumption is that property functions

are used to measure value delivery, and hence decision variables that are inputs to

property functions also directly influence value delivery.

3) Capture Architecturally Distinguishing Decisions: The third guiding

principle for formulating a decision problem using ADG is to capture the architec-

turally distinguishing decisions. An architecturally distinguishing decision is one that

potentially changes the overall high-level concept of the architecture to be imple-

mented. For example, when designing a road vehicle, an architecturally distinguish-

ing decision is the decision of “how many wheels?” with the set of alternatives {2,4}.
By choosing two wheels, the concept becomes motorcycle-like. The architecture must

take into consideration that the vehicle must be balanced. By choosing four wheels

the concept becomes more car-like. Assuming the four wheels are not in a single line,

balancing the vehicle does not become a major design issue. Cars and motorcycles

have the same value delivering function: transporting people and cargo. However,
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their architectural concepts, the mapping of function to form[Cra07], are different.

4) Keep it Simple: The fourth guiding principle is to keep the problem formula-

tion as simple as possible, but no simpler. This principle is often attributed to Albert

Einstein [HKG01], however the idea of striving to keep a model simple probably pre-

dates Einstein [Mae06]. Since ADG is an enumerative procedure, this principle is

important. ADG’s simulation algorithm for exploring the decision space consumes

computational resources at a rate that scales exponentially with the number of deci-

sion variables (see Section 3.7.2). Since computational resources are limited, there is

an upper limit to the the size of a decision problem that ADG can explore in a rea-

sonable amount of time. To follow this principle, the decisions in the ADG should be

limited to ones that are architecturally distinguishing or are inputs to metrics func-

tions. In general, decision variables which are neither inputs to property functions

nor architecturally distinguishing should not be included in the model.

4.2.2 Formulating the Apollo Architecture Decision Graph

In general, the four guiding principles presented in the preceding subsection are ap-

plied iteratively to an architecture problem to develop a set of decision variables,

logical constraints, property variables, and property functions. This subsection de-

scribes how the four principles were specifically applied to the Apollo architecture

problem.

The first guiding principle for formulating the decision problem is to set the bound-

aries of the architectural space under consideration. The highest level specification

of the system can be derived from President Kennedy’s 1961 speech on the Urgent

Needs of the Nation: Value was delivered by the Apollo system if it satisfied the

goal to improve the international influence and to increase the prestige of the United

States by “landing a man on the moon and returning him safely to the Earth [before

the end of the 1960’s]”[Ken61]. This statement sets the requirement that the Apollo

project should land at least one man on the moon and return him to Earth. Clearly,

any architecture which do not provide a mission concept with the means to reach this

goal should not be included within the bounds of the architectural decision space.

In the early 1960’s, the idea of landing one man on the moon was considered an

extremely ambitious goal since the U.S. space program had only successfully launched

one astronaut into sub-orbital space at the time. However, since a lunar mission is

a relatively long, and complex space mission, it may have been feasible, but risky

99



to send one lone astronaut on the voyage. Since the main objective of the project

was to develop an architecture that could complete the engineering goals successfully

by the end of decade, it is not necessary to consider missions with large numbers

of astronauts, such as von Braun’s Conquest of the Moon [vB53]. In this study we

bound the number of crew members to at least one and no more than three.

The feasibility and reliability of in-space rendezvous and docking was a heavily

debated topic in the early planning years of the Apollo project. John C. Houbolt

showed through extensive analysis that is was challenging, but technically feasible.

He argued that missions including rendezvous, especially rendezvous and docking in

lunar orbit, should be considered [Han99, Hou61b, Hou61a]. The alternatives for

mission modes which include rendezvous and docking are included within the bounds

of the Apollo decision model.

The second principle states that the decision variables should be inputs to the

property functions. Two property functions that are considered important in the

development of any space mission are the total mass of the mission and the probability

of mission success [Wer99]. The calculation for the total mass of the mission must

take into account the mission mode, the crew size, as well as the fuel types to be

used for spacecraft maneuvers. The second property function, the calculation of the

probability of success, depends on the maneuvers included in the mission mode, the

crew size, and the fuel types. The methodology for calculating these two properties

will be discussed in Section 4.2.5.

The third principle states that the decision model should include the architec-

turally distinguishing decisions. Among the decisions for Apollo, decision variables

related to the mission mode are clear examples of architecturally distinguishing deci-

sions. For example, if the mission mode includes lunar orbit rendezvous, the concept

for the mission includes two vehicles: one orbiting crew vehicle which has a heat

shield so that it can re-enter the Earth’s atmosphere, and a lunar lander vehicle that

is specialized for descent to the surface of the moon and ascent back to lunar orbit.

A change in this decision would imply a change to the assignment of the architec-

ture’s functions to its forms. Therefore, it is important to include these decisions

in the decision model. The other two categories of decisions that were mentioned,

the crew size and fuel types, are not architecturally distinguishing, however, they are

important for calculating the two property functions, so they must also be included.

The fourth principle states the model should be kept as simple as possible, but no
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simpler. The application of this principle lead to the removal other decision variables,

like the launch site decision and the task assignments to the different NASA centers.

Neither of these decisions has a direct impact on the total mission mass or the proba-

bility of mission success. More subtly, neither one of these decisions is architecturally

distinguishing, because neither of them changes the mapping of function to form in

the high-level concept the architecture. A change in these decisions could change the

implementation of the architecture, but would not change the feasibility of particular

mission modes, crew sizes, or fuel types.

4.2.3 Apollo Decision Variables

After considering the four principles and several iterations building and testing the

ADG model of the Apollo architecture decision space, a set of nine decision variables

were selected for this study. The set of decision variables includes decision variables

related to the mission mode, the crew size, and the rocket fuel types used for Apollo.

Table 4-1 is a morphological matrix (see Section 2.3.1) of these nine decisions.

Table 4-1: The set of nine decision variables for the Apollo study.

shortID Decision units alt A alt B alt C alt D
EOR Earth Orbit Rendezvous none no yes
earthLaunch Earth Launch Type none orbit direct
LOR Lunar Orbit Rendezvous none no yes
moonArrival Arrival at Moon none orbit direct
moonDeparture Departure from Moon none orbit direct
cmCrew Command Module Crew people 2 3
lmCrew Lunar Module Crew people 0 1 2 3
smFuel service module fuel none cryogenic storable
lmFuel lunar module fuel none NA cryogenic storable

Earth

Moon

EOR
{no, yes}

LOR
{no, yes}

earthLanch
{orbit, direct}

moonDeparture
{orbit, direct}

moonArrival
{orbit, direct}

Figure 4-2: The five mission-mode related decision variables.
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Five of the decisions are mission-mode related decisions: EOR, earthLaunch, LOR,

moonArrival, and moonDeparture. The mission mode-related decisions are graphi-

cally indicated in Figure 4-2. All five of these decision variables indicate a choice of

alternative maneuvers at different points of the mission. By combining one alterna-

tive from each of the five decisions, a mission-mode can be defined. For example,

during the Apollo architecting process, historical records indicate that three different

classes of mission modes were under consideration: Direct, Earth Orbit Rendezvous,

and Lunar Orbit Rendezvous (see Figure 4-3). Table 4-2 shows how the three Apollo

mission modes can be mapped to the set of five decision variables.

Table 4-2: Mapping of historical Apollo mission modes (Figure 4-3) to the nine ADG
decision variables. Note that the combinations of decision variable assignments listed
in right column must also satisfy the logical constraints in Section 4.2.4.

Apollo Mission Mode ADG Decisions
Direct Mission Mode: EOR is no, earth Launch is orbit or direct, moonAr-

rival is orbit or direct, LOR is no, and moonDepar-
ture is orbit or direct.

EOR Mission Mode: EOR is yes, earth Launch is orbit, moonArrival is
orbit or direct, LOR is no or yes, and moonDepar-
ture is orbit or direct.

LOR Mission Mode: EOR is no or yes, earth Launch is orbit or direct,
moonArrival is orbit, LOR is yes, and moonDepar-
ture is orbit

In addition to these three major classes of mission-modes, this set of five decision

variables can be used to specify combinations and variations of these three, such as

a mission-mode which has maneuvers for Earth orbit rendezvous and docking as well

as lunar orbit rendezvous and docking. In this study, this mission-mode is named

“EOR+LOR”.
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Figure 4-3: Mission modes under consideration during the Apollo Program: Direct, EOR,
and LOR. [Source: NASA]

The four remaining decisions are related to crew sizes and fuel types: cmCrew,

lmCrew, smFuel, and lmFuel. These four decisions, as well as the five decisions related

to the mission-mode are explained in the following list:

EOR : Earth Orbit Rendezvous, {no, yes}. The Earth orbit rendezvous decision

specifies whether or not the spacecraft rendezvous and docks with a second

spacecraft after launch.

earthLaunch : Earth Launch Type, {orbit, direct}. This decision specifies whether

the spacecraft enters Earth orbit after launch or is directly injected towards the

moon.

LOR : Lunar Orbit Rendezvous, {no, yes}. The lunar orbit rendezvous decision

specifies whether or not there is a second lander spacecraft which lands on the

moon. The alternative “yes” implies that there is a second lander spacecraft.

The mission mode must then include entering lunar orbit, undocking the second

spacecraft, descending to the lunar surface, ascending from the lunar surface,

then rendezvous and docking with the first spacecraft in lunar orbit. The al-

ternative “no” indicates that lunar orbit rendezvous does not occur, and by

implication there is only one crewed spacecraft which transports the crew to

the lunar surface and back to Earth.

103



moonArrival : Arrival at Moon, {orbit, direct}. The arrival at the moon decision

specifies if the spacecraft enters lunar orbit, or directly descends to the lunar

surface.

moonDeparture : Departure from Moon, {orbit, direct}. The departure from the

moon decision specifies if the spacecraft enters lunar orbit after launching from

the moon, or is directly injected into a trans-Earth trajectory.

cmCrew : Command Module Crew, {2, 3}. This decision specifies the command

module crew size at launch

lmCrew : Lunar Module Crew, {0,1,2,3}. This decision specifies the lunar module

crew size. The alternative 0 is used to indicate that there is no lunar module

crew in the case that there is no separate lunar lander.

smFuel : Service Module Fuel Type, {cryogenic, storable}. This decision specifies

one of two types of service module rocket fuel. Cryogenic is LOX/H2 propellant,

and storable is a hypergolic propellant [Wer99].

lmFuel : Lunar Module Fuel Type, {NA, cryogenic, storable}. This decision specifies

the type of lunar lander rocket fuel. Cryogenic is LOX/H2 propellant, and

storable is a hypergolic propellant. The assignment NA is used in the case that

there is no separate lunar module and therefore this decision variable is not

applicable.

4.2.4 Apollo Logical Constraints

The constraints are generated by capturing available knowledge about the system and

the relationships between the decision variables. The list of constraints is in Table

4-3.

Table 4-3: Apollo Logical Constraints.

name scope equation
EORconstraint EOR,earthLaunch (EOR == yes && earthLaunch == orbit) || ( EOR == no)
LORconstraint LOR,moonArrival (LOR == yes && moonArrival == orbit) || (LOR == no)
moonLeaving LOR,moonDeparture (LOR == yes && moonDeparture == orbit) || (LOR == no)
lmcmcrew cmCrew,lmCrew (cmCrew >= lmCrew)
lmexists LOR,lmCrew (LOR == no && lmCrew == 0) || (LOR == yes && lmCrew >0)
lmFuelConstraint LOR,lmFuel (LOR == no && lmFuel == NA) || (LOR == yes && lmFuel != NA)
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Table 4-4: Apollo Logical Constraint Tables.

EORConstraint EOR lmcmcrew cmCrew
earthLaunch no yes lmCrew 2 3

orbit 1 1 0 1 1
direct 1 0 1 1 1

2 1 1
3 0 1

LORConstraint LOR lmexists LOR
moonArrival no yes lmCrew no yes

orbit 1 1 0 1 0
direct 1 0 1 0 1

2 0 1
3 0 1

moonLeaving LOR lmFuelConstraint LOR
moonDeparture no yes lmFuel no yes

orbit 1 1 NA 1 0
direct 1 0 cryogenic 0 1

storable 0 1

Each constraint is explained in the list below. Constraint tables for each constraint

are shown in Table 4-4.

EORconstraint scope: EOR, earthLaunch. If there is an Earth orbit rendezvous,

then this implies that the earthLaunch decision must be equal to orbit, since

it’s impossible to rendezvous without entering Earth orbit first.

LORconstraint. scope: LOR, moonArrival. If there is a lunar orbit rendezvous in

the mission mode, this implies that the moonArrival Decision must be equal

to orbit, since it’s impossible to complete the rendezvous maneuver without

entering lunar orbit before descending to the lunar surface.

moonLeaving. scope: LOR, moonDeparture. If there is a lunar orbit rendezvous in

the mission mode, this implies that the moonDeparture Decision must be equal

to orbit, since it’s impossible to complete the rendezvous maneuver without

entering lunar orbit after ascending from the lunar surface.

lmcmcrew. scope: lmcrew, cmcrew. This constraint restricts the crew size of the

lunar module to be less than or equal to the crew size of the command module.

lmexists. scope: lmCrew, LOR. This constraint forces lmCrew to be zero if there is

no lunar orbit rendezvous.

lmFuelConstraint. scope: lmFuel, LOR. This constraint forces lmFuel to be NA if

there is no lunar orbit rendezvous.
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4.2.5 Apollo Property Variables and Property Functions

As explained above, there are two metrics that are especially useful in predicting the

success of the Apollo project: operational risk, and initial mass to low Earth orbit

(IMLEO). These two properties are outlined in next two subsections.

Initial Mass to Low Earth Orbit (IMLEO) Property

Following common aerospace engineering practice, the rocket equation[Cho96] can

be used to estimate vehicle masses, depending on the velocity increment they must

supply, their payload and the mission mode. The equation is defined as follows:

mf = mi exp

(
−∆V

g0 · Isp

)
, (4.1)

where ∆V is the difference in velocity over the entire period of the maneuver, g0 is

the gravitational constant, Isp is the specific impulse of the propulsion system, mf is

the final mass after the maneuver, and mi is the initial mass before the maneuver.

The two mass terms mf and mi can be broken down as follows:

mf = mbo + mpl (4.2)

mi = mbo + mpl + mprop, (4.3)

where mbo is the burnout (structure-only) mass, mpl is the payload mass, and mprop

is the propellant (fuel) mass. For a multi-stage rocket system, the rocket equation

can be applied recursively for each maneuver. If the “payload” of a stage is actually

another rocket with its own fuel and payload, then mpl becomes the initial mass for

the next application of the equation.

In this study, values for constants such as the structural mass ratios, propulsion

characteristics, and models for crew compartment sizes were taken from a combination

of historic data and the assumptions used in the contemporary 1961 Houbolt Report

[Hou61a].

Risk Property

In addition to IMLEO, the other major factor in selection of the mission mode was

operational risk. In order to calculate operational risk we extended the methodology

presented in Koo’s Apollo study [Koo05]. The risk property variable for a complete
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set of decision variables that have been assigned particular alternatives is calculated

by multiplying the entries in the table using the following equation:

risktotal =
n∏

i=1

risk(di) (4.4)

where the decision variables are labeled from 1 to n and risk(di) is a the risk multiplier

for a particular decision variable assignment derived from Table 4-5. For example,

the risk multiplier for risk(EOR = yes) is 0.95, according the table.

Note that the risk property is non-separable since the risk due to the cryogenic

fuel for service module depends on the number of burns performed by that module’s

engine. The number of burns depends on the LOR decision variable. If LOR does not

exist, the service module’s engine must fire as many as four times: once for lunar orbit

insertion, once for decent, once for ascent, and once for lunar orbit departure. If the

architecture does not include LOR, the service module may burn as few as two times:

once for lunar orbit insertion and once for lunar orbit departure. This abnormality

in the risk table is noted under the entry for service module fuel (smFuel). The risk

due to the service module fuel type has an exponent equal to the number of service

module burns. Since this method for calculating the risk property does not qualify

as a separable property function (see Section 3.3.1), it was implemented in the ADG

as a Jython function. The code listing for the Jython functions for both risk and

IMLEO are included in Appendix A.

Table 4-5: Risk Property Table.

CAT shortID Decision units alt A alt B alt C alt D
decision EOR Earth Orbit Rendezvous none no yes
prop risk 0.98 0.95
decision earthLaunch Earth Launch Type none orbit direct
prop risk 0.99 0.9
decision LOR Lunar Orbit Rendezvous none no yes
prop risk 1 0.95
decision moonArrival Arrival at Moon none orbit direct
prop risk 0.99 0.95
decision moonDeparture Departure from Moon none orbit direct
prop risk 0.9 0.9
decision cmCrew Command Module Crew people 2 3
prop risk 1 1
decision lmCrew Lunar Module Crew people 0 1 2 3
prop risk 1 0.9 1 1
decision smFuel service module fuel none cryogenic storable
prop risk .95^(burns) 1
decision lmFuel lunar module fuel none NA cryogenic storable
prop risk 1 0.9025 1
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The risk property can be interpreted as a relative measure of the probability of

mission success. In NASA terminology, this risk measure is equal to 1−LOM , where

1 indicates the best case (100% probability of success) and LOM is the probability

of loss of mission.

4.2.6 Apollo Architecture Decision Graph

Figure 4-4 is the complete view of the Architecture Decision Graph (ADG) for the the

Apollo architecture decision problem. The complete view provides a visualization of

the connectivity of the decision variables, logical constraints, property variables, and

property functions. Since it is visually difficult to pick out the important features

of this graph from the complete view alone, the two additional views of the ADG

described in Section 3.3.2, the logical view and the properties view, are presented in

Figures 4-5 and 4-6.

Figure 4-4: Apollo ADG – Complete View. The decision variables are green rectangles
with a clear background. Each decision variable’s set of alternatives is listed in braces
below the decision variable’s name. The property variables are green rectangles with
an orange background. The logical constraints are blue ellipses with clear background,
and the property variables are blue ellipses with an orange background.

108



Figure 4-5: Apollo ADG – Logical View. This is an alternative visualization of the ADG.
In this view the property variables and property functions have been removed. Only the
decision variables and logical constraints appear. This view is useful for visualizing only
the logical constraint relations between decisions variables.

Figure 4-6: Apollo ADG – Properties View. This is another alternative visualization of
the ADG. In this view the logical constraints relations have been removed. Three types
of nodes remain: property variables, property functions, and decision variables. This
view is useful for visualizing only the structure of the property value calculations.
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Figure 4-5 is the logical view. In this view, certain features of the decision problem

become apparent. By inspecting the connectivity of the graph, it is clear that decisions

about maneuvers near the moon and the configuration of the lunar module (LOR,

lmFuel, lmCrew, and moonDeparture) are not logically connected to the decisions

related to maneuvers near Earth (EOR and earthLaunch) nor the decision about

the service module fuel type (smFuel). These types of architectural features are not

immediately apparent through reading the textual and tabular description of the

decision problem. However, they become apparent though the use of the logical view.

Figure 4-6 is the properties view. In this view it becomes apparent that the three

logically unconnected parts of the problem are linked in terms of system properties.

In this ADG both the risk function and the IMLEO function are connected to all

of the decision variables. Although the decision variables can be split into three

logically unrelated sets, they all must be taken into consideration when calculating

the property functions.

From a systems engineering management perspective, the knowledge gained about

the decision variables through the visual inspection of these three views can inform

engineering task breakdown and scheduling. This impact will be discussed further in

Sections 4.3 and 4.7.

4.3 Structural Reasoning

The structural reasoning process is the second process in the ADG cycle (Figure 3-1).

It involves analyzing the structure of the ADG and producing structural information

about the decision problem. Note that some structural reasoning results were already

discussed in the previous section. In that section, information about the structure of

the problem was gained through visual inspection of the ADG alone. This section

formalizes that notion by applying the two structural reasoning algorithms introduced

in Section 3.4 to the Apollo ADG.

The structural reasoning results of two algorithms from Section 3.4, ADGsort1

and ADGsort2, are presented in Table 4-6. ADGsort1 calculates the degree of con-

nectivity of the decision variables. This is a first order measure of the how many

decisions are directly connected through adjacent logical constraints. ADGsort2 is an

alternative measure of the structural properties of the ADG which adjusts the degree

of connectivity by subtracting the size of each decision variable’s set of alternatives.
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Table 4-6: Results of ADGsort1 and ADGsort2 for the Apollo decision problem. ADGsort1
calculates the degree of connectivity and ADGsort2 calculates the sort2rank.

decision variable degree of connectivity sort2rank
EOR 1 -1

earthLaunch 1 -1
LOR 4 2

moonArrival 1 -1
moonDeparture 1 -1

cmCrew 1 -1
lmCrew 2 -2
smFuel 0 -2
lmFuel 1 -2

Specific descriptions of these algorithms are contained in Section 3.4.

The primary purpose of applying the structural reasoning algorithms to the ADG

is to provide a heuristic to enhance simulation performance. The values for either

degree of connectivity or sort2rank are used to guide the construction of an executable

OPN model. In Section 4.4, the OPN model is built according to the ordering specified

by sort2rank. The impact of both structural reasoning results on the efficiency of

decision problem simulation is discussed in Section 4.6.1.

From a systems engineering management perspective, the results can also be used

for task prioritization and scheduling. A high ranking in terms of degree of connectiv-

ity indicates that a decision is highly connected. In this example, the LOR decision

variable is connected to four other decisions through logical constraints (degree of

connectivity=4). This indicates that a change in the LOR decision variable may

impact the set of available alternatives for at least four other decision variables (lm-

Fuel, lmCrew, moonDeparture, and moonArrival). On the other extreme, the service

module fuel decision variable (smFuel) is not logically connected to other decision

variables (degree of connectivity=0). A change in service module fuel type does not

change the set of available alternatives for any other decisions.

This information derived from the degree of connectivity is useful to an engineering

manager. It implies that a team considering the LOR decision variable must collab-

orate with any other teams considering the four other connected decision variables.

On the other extreme, a team considering the smFuel decision variable can work in-

dependently. Although changing the selection of smFuel may impact the system-wide

properties (risk and IMLEO), it does not impact the feasibility of alternatives of other
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decision variables. Of course, the validity of these task management implications de-

pends on the validity of the model itself. The aim of this approach is to enhance

the judgement of a systems architect by providing guidance for the management of

architecting tasks by identifying features in the structure of the problem.

4.4 Simulating

The simulating process is the third process in the ADG cycle (Figure 3-1). It involves

transforming the structural information about the ADG into an executable OPN

model and then using the OPN model to produce a set of feasible combinations of

decision variable assignments and their properties, C. The algorithm for completing

this task, OPNbuild1, is described in detail in Section 3.5. OPNbuild1 requires a

decision variable ordering as one of its inputs. For the Apollo decision problem, the

results of ADGsort2 were used (Table 4-6). The resulting OPN executable model is

shown in Figure 4-7.

Figure 4-7: Apollo OPN executable model. Produced by the OPNBuild1 algorithm using
the decision variable order resulting from the ADGsort2 algorithm.

Running the OPN executable model in Figure 4-7 produces 138 feasible combina-

tions of decisions out of a total combinatorial space consisting of 1536 combinations
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of decision variable assignments.2 The results of the simulation are presented in the

next section. Discussion of the performance of the simulation algorithm is in Section

4.6.1.

4.5 Viewing

The fourth process of the ADG cycle (Figure 3-1) is decision data viewing. The

viewing process transforms the feasible combinations of decision variable assignments

and their properties, C, into new available knowledge for the decision-maker. Section

3.6 describes two methods for viewing decision data: Pareto front plots and decision

space views. Both of these methods were applied to the Apollo architecting problem

and the results are presented below.

4.5.1 Pareto Front Plot

The Pareto front plot (see Section 3.6.2) shown in Figure 4-8 contains some interesting

results. Among the solutions on the Pareto front are the competing mission modes

for the Apollo program as well as a point which matches the configuration of the

Soviet lunar mission architecture.

Points 1 and 2 are “direct” missions with three and two crew members, re-

spectively. A direct mission mode implies that the mission has neither lunar orbit

rendezvous nor Earth orbit rendezvous. These types of missions were among the

ones initially supported Wernher von Braun’s group at Marshall Space Flight Cen-

ter [Han99, Han95]. In the direct missions, the lunar module does not exist, and

therefore there is no lunar module crew. Points 3, 4, 5, 6, and 8 are architectures

which include lunar orbit rendezvous maneuvers. Point 3 matches the configuration

of Apollo: It has three crew members in the command module, two crew members

in the lunar module and uses storable propellants for both the service module and

the lunar module [MC04]. Point 8, which is the minimum mass configuration, uses

two crew members in a command module and one crew member in a lander with

cryogenic propellants. Point 8 is the point which most closely models the proposed

Soviet lunar mission’s architecture [Sid03, Har99, Wil89]. Point 7 is the only EOR

mission which appears on the Pareto front. It has a configuration of two crew in the

command module, and uses cryogenic propellants.

2The total size of the combinatorial space is calculated by suspending the logical constraints.
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Figure 4-8: Apollo Pareto front plot comparing IMLEO to probability of mission success.
Each point in the plot indicates a logically feasible combination of decision variable as-
signments. The blue dashed line indicates the Pareto front. The U indicates the utopia
point. Note that the IMLEO numbers are consistent with contemporary information
available in the early 1960’s [Hou61a]. The actual IMLEO for the Apollo mission was
about twice value the indicated by point 3.

4.5.2 Decision Space Views

Section 3.6.1 introduced the concept of the decision space view. It is a plot of the

decision variables on two axes which measure their potential impact on the archi-

tecture in different ways. The horizontal axis is the degree of connectivity, which

measures the impact of a change in a decision variable on the set of alternatives for

other decisions. The vertical axis is the Property Variable Sensitivity (PVS), which

is a measure of the potential impact of a change in a decision variable on a system

property.

The Apollo ADG contains two property variables: IMLEO and risk. The decision

space view corresponding to the IMLEO property is shown in Figure 4-9a and the

decision space view corresponding to the risk property is shown in 4-9b.

The most striking feature of the two decision space view plots is the location

of the LOR decision variable in both plots. A conclusion that can be drawn from
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Figure 4-9: Decision Space Views for the IMLEO and risk properties. The plots show
the sensitivity of the property functions to a change in a decision variable assignment
versus the decision variable’s degree of connectivity.

Figure 4-9 is that the LOR decision variable is a high impact decision both in terms

of impact on system properties as well the degree of connectivity to other decisions.

This conclusion concurs with historical records[Sea05]. A second conclusion that can

be drawn from these two plots is that two other important decisions are the lunar

module crew size (lmCrew) and lunar module fuel type (lmFuel). These decisions

were also identified by Houbolt as critical factors that impact IMLEO and risk in his

1961 report on lunar orbit rendezvous for the Apollo mission[Hou61a, Kin05].
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Referring to the decision space view breakdown from Figure 3-12, the decision

variables can be categorized into the four categories. A decision category chart is

shown in Table 4-7. According to the discussion in Section 3.6.1, the suggested order

in which to address these decisions can be derived from the chart. The decision cate-

gory chart highlights LOR and lmCrew as sensitive and strongly connected decisions

in terms of both property variables. These two decision should be considered a high

priority.

Table 4-7: Decision category chart for the Apollo ADG.

Category IMLEO risk
I: sensitive & strongly 
connected

LOR, lmCrew LOR, lmCrew

II: sensitive, but weakly 
connected

lmFuel, moonArrival, 
moonDeparture, smFuel

lmFuel, smFuel, moonDeparture

III: insensitive & strongly 
connected
IV: insensitive and weakly 
connected

cmCrew, EOR, earthLaunch
moonArrival, earthLaunch, EOR, 

cmCrew

The next group of decisions to be addressed includes lmFuel, moonArrival, moon-

Deparature, and smFuel. Note that by addressing the LOR decision before addressing

this second group may greatly reduce the size of the remaining configuration space.

If LOR is set to “yes”, the moonArrival and moonDeparture decision variables can

only be set to “orbit”.3

The last group of decisions to be addressed consists of cmCrew, EOR, and earth-

Launch. Note that the moonArrival decision variable was already addressed in the

second group. The placement of the cmCrew decision variable in this last group

also concurs with historical records. According to an interview with Robert Seamans

[SKK05], an interview with John Houbolt [Kin05], and the lack of mention of for-

mal analysis in historical records [MC04], the command module crew size was chosen

almost arbitrarily. In the interview, Houbolt stated,

“In one of our informal, roundtable sessions, it was discussed that

there had to be at least two. You needed a pilot in the orbiter, and you

needed someone in the lander. With an airplane, there is usually a pilot,

a co-pilot, and a navigator; so, arbitrarily, we picked a crew of three.”

Officially, the Apollo crew size of three astronauts was set as a ground rule for the

1961 Golovin committee to study launch vehicles[MC04]. According to some historical

3This assertion can be verified using the logical constraints in Section 4.2.4.
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accounts, the ground rule was accepted because it was assumed that the astronauts

would need to run Navy-like round-the-clock 8-hour shifts, which would require at

least three astronauts [MC04, BGS79, Kin05]. Although John Houbolt suggested

two crew alternatives for the lunar mission in his report on lunar orbit rendezvous

[Hou61a], the crew size decision was never changed. This historical record also concurs

with results from this study which determined that the command module crew size

is not as impactful as the other decision variables.

4.6 Analysis of the Methodology

4.6.1 Impact of the Structural Reasoning Algorithms on Simulation Per-

formance

The performance of the sorting algorithms is measured by their impact on the ef-

ficiency of the simulation algorithm. Since the Apollo problem has more decisions

than the example problem in Chapter 3, it provides an opportunity to measure the

efficiency impact of the ADGsort1 and ADGsort2 algorithms on a larger problem.

The total number of possible orderings for the nine decisions is 9! = 362880. Since

this number is relatively large, a complete study of all possible orderings, like the one

in Section 3.7.2, is not practical.4 Instead, we use a random generator of variables

orderings to generate a sample set of over 300 variable orders in addition to the ones

produced by ADGsort1 and ADGsort2.

Figure 4-10 is a twin vertical axis plot of the performance of the simulation algo-

rithm due to the orderings the two orderings produced by ADGsort1 and ADGsort2

as well as 330 randomly generated decision variable orderings. The left axis refers

to the red points which indicate the total time of computation measured in seconds.

The right axis refers to the blue diamond shaped points. This test was run on a

PC running Windows 2003 sever equipped with an Intel Core 2 Duo 6600 Processor

(2.40GHz) and 4 GB of RAM. The Java JVM was version 1.6.

The data in Figure 4-10 shows some similar features to the data from Figure 3-14.

Both figures show a correlation between the number of tokens generated and the total

computational time. For the Apollo ADG, the variable order produced by ADGsort1

performs better than the variable order produced by ADGsort2. However, compared

4Post-hoc analysis estimates that a complete study of all decision variable orderings would take
362880 ∗ 7sec/60/60/24 ≈ 30days to complete.
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Figure 4-10: OPNBuild1 Performance for the Apollo Problem. This test of simulation
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generated]. The performance of the orderings produced by ADGsort1 and ADGsort2
are indicated with the green vertical lines.

to the entire sample set of variable orderings, both of these variable orders produce

OPN models which performed within 10% of the best ordering in the sample set.

Additional studies of computational performance are presented in Section 5.7.1.

4.6.2 Comparison to Koo’s study

In support of his thesis, “A Meta-language for Systems Architecting” [Koo05], B.

Koo completed a similar retrospective study of early systems architecture decisions

for Apollo. Koo’s study modeled the Apollo system using Object-Process Network

as a meta-language to build a domain specific language which represents that space

of possible mission modes. The OPN model which corresponds to this approach is

shown in Figure 4-11.

Koo’s study used a motion language abstraction [Fra01] to model transitions and

steady states of a mission modes as processes and objects in OPN. The conclusions of

his study found that OPN’s primitives were well-suited for constructing a discretized,

finite abstraction of the continuous, infinite possible space of mission-modes. The

results of the study identified nine categories of mission-modes, which included the
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Figure 4-11: B. Koo’s OPN model of a domain specific language representing the space
of Apollo mission modes. (Source: [Koo05])

mission modes under consideration by NASA in the 1960’s.

Koo’s motion language approach to studying this architecture space is distinctly

different from the ADG-based approach presented in this chapter. Koo’s model con-

tains an explicit sequence of mission operations, which are modeled as a discrete

actions in a motion language. The notion of decision variables is implicitly captured

by the sequence of branches in the network of objects and processes. Branches indi-

cate alternative “trajectories” through the sequence of maneuvers.

Alternatives in Koo’s model are evaluated in the order they would occur in the

lunar mission. For example, the evaluation of the set of alternatives modeling the

Earth departure type (to orbit or directly injected towards the moon) occurs before

the evaluation of the alternatives for the lunar arrival type (to orbit or direct to

surface). In contrast, in the ADG representation, decision variables are treated as

an un-sequenced set of decisions. Alternatives are evaluated in an order that is

computationally convenient, instead of explicitly evaluated in the order they would

occur during the mission. The evaluation of the decision about the lunar arrival type

could occur before or after the decision about the Earth departure type.

There are certain advantages to Koo’s approach to the Apollo architecting prob-

lem. In the case of the Apollo mission mode problem, using a sequenced abstraction

was appropriate since both the constraints between alternative maneuvers and the

calculation of metrics are sequence dependent. Calculation of the rocket equation

(Equation 4.1) depends on the sequence of maneuvers. In Koo’s model the sequence
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Table 4-8: Comparison of two approaches for modeling the decisions for the Apollo pro-
gram.

Type of Decision Koo’s model ADG model
Decisions about the se-
quence of maneuvers

EXPLICITLY represented
by the sequence of ob-
jects and processes in OPN
model recursively applied
property functions.

IMPLICITLY represented
through decision variables
and property functions
that determine implied
sequence.

Decisions about static
configuration of the sys-
tem

IMPLICITLY represented
in the OPN model as
branches from objects to
processes which change the
state of the model.

EXPLICITLY represented
as decision variables with a
set of alternatives.

of maneuvers is explicit. In the ADG model, certain assumptions regarding the im-

plied sequence of the maneuvers resulting for certain combinations of decisions are

embedded in the IMLEO property function. These assumptions about maneuver or-

der were required to properly calculate rocket performance. In Koo’s approach, it’s

simple to add new types of mission mode maneuvers to the model. In the ADG

approach, changing the set of maneuvers requires revisiting the IMLEO and risk

property function calculation methods in order to verify if the assumptions about the

sequence still hold.

There are also certain advantages to the ADG approach for modeling the Apollo

decision problem. New decisions or alternatives about the static configuration of

the system can easily be added by inserting a new decision variable or modifying an

existing decision variable’s set of alternatives. A new executable model, which takes

into account the new information, can be generated automatically through running

the structural reasoning and simulation algorithms.

Table 4-8 outlines the difference between the two modeling approaches, in terms

of how they model architectural decisions. From this study, I conclude that the ADG

is better suited for architectural selection models and not as well suited for strongly

sequenced decision models.

4.7 Chapter Conclusions

The primary objective of this chapter was to demonstrate that ADG can be applied

to a realistic architecting problem. This chapter achieves this goal by a presenting
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a retrospective architectural study of the Apollo program by modeling it as a set of

interrelated decisions. The second objective of this chapter was to provide guidance

for transforming architectural problems into decision problems. Section 4.2.1 presents

four guiding principles which can be applied to an architecture problem in order to

transform it into an ADG.

In this retrospective study of Apollo, it was demonstrated that decisions that

have been historically considered the most important ones were recovered through

ADG’s methodology. Specifically, the decision about Lunar Orbit Rendezvous (yes

or no) is clearly identified as a decision which shows up as highly impactful in the

decision space views for mass and risk presented in Figure 4-9. Historical records

[Sea96, BGS79, Han95, MC04, EMB+78, Han99] and an interview with Associate

Administrator of NASA during the Apollo Program, Dr. Robert Seamans[SKK05],

concur that the Lunar Orbit Rendezvous mission mode decision was the most critical

and consequential decision for the entire Apollo project. ADG analysis also identified

lander crew size and lander fuel type as the next most impactful decisions. This

concurs with the 1961 Houbolt report[Hou61a], which asserts that the three decisions

LOR (yes or no), lander fuel type, and lander crew size were the most impactful

decisions for the 1960’s lunar exploration architecture.
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5
Lunar Outpost Architecture Study

5.1 Overview

This chapter presents a study of the architecture for NASA’s lunar outpost program.

The objective of this chapter is to generate and evaluate feasible lunar outpost ar-

chitectures in order to identify the architectural decisions which may have a strong

impact on the delivery of value to the space program’s stakeholders. Identifying the

most impactful decisions allows the system architect of the lunar outpost program to

prioritize decision-making activities.

The architectural study in this chapter demonstrates the application of ADG to

a different type of architecting problem than the one presented in Chapter 4. In the

previous chapter, the ADG framework was applied to the Apollo architecture problem.

The Apollo study was primarily focused on determining the operational architecture

and how changes in the architecture may impact the probability of mission success

and the total mission mass. In this lunar outpost architecture study, the emphasis

is on decision variables related to the static technology and operational configuration

of the lunar outpost architecture.

The outline of this chapter follows the outlines of Chapters 3 and 4. First, the

lunar outpost architecture problem is introduced. The four guiding principles for

transforming the architecture problem into a decision problem are applied to the

problem in order to develop the ADG representation. The remaining parts of the ADG

framework are applied: structural reasoning, simulating, and viewing are applied to

the lunar outpost problem to generate a set of feasible lunar outpost architectures

and identify the most impactful decision variables. The chapter concludes with an

analysis of the computational performance of the methodology, a discussion of the

engineering results, and a summary of the findings of this chapter.
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Figure 5-1: One of NASA’s preliminary concepts for a new human lunar lander. (Source:
[Exp05])

5.2 The Lunar Outpost Architecture Problem

In a speech called “The Vision for Space Exploration” by President Bush in January

2004 announced a new direction for NASA [Bus04]. It directed NASA to “build new

ships to carry man forward into the universe, to gain a new foothold on the moon, and

to prepare for new journeys to worlds beyond our own.” The details of this vision were

studied by the President’s Commission for Moon, Mars, and Beyond [Ald04], which

concluded that “The long-term, ambitious space agenda advanced by the President

for robotic and human exploration will significantly help the United States protect

its technological leadership, economic vitality, and security.”

The NASA Authorization Act of 2005 [10905] codified the Vision for Space Ex-

ploration (VSE) by requiring NASA to develop a long-term lunar outpost:

“The Administrator shall establish a program to develop a sustained

human presence on the Moon, including a robust precursor program to

promote exploration, science, commerce, and U.S. preeminence in space,

as a stepping stone to future exploration of Mars and other destinations.”

Several aspects of high-level requirements for the lunar exploration architecture

can be derived from these short quotes: There shall be new ships (spacecraft), there

shall be lunar exploration, there shall be a long-term presence on the moon, and

there shall be preparation for Mars exploration. The high-level goals of the program

can also be extracted from these statements: promote exploration, increase science
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knowledge, promote commerce, increase U.S. influence in the world, and develop of

technology for future Mars exploration missions.

Although the proposed human lunar outpost is complex, unprecedented and novel,

the challenges involved in the effort to architect a lunar outpost are distinctly different

than the ones faced by Apollo’s architects in the early 1960’s. The main challenge for

Apollo project was to identify an architecture that would successfully complete the

technical task of landing a man on the moon and returning him safely to Earth by

the end of the decade. The cost of the mission, science return, and other considera-

tions were secondary1. In the case of the lunar outpost program, NASA is building

upon more than forty years of experience in spaceflight. The program starts with

the assumption that it is technically feasible to establish the lunar outpost. Con-

trolling costs, controlling programatic risk, and ensuring consistent value delivery to

stakeholders are the current priorities [TBB+05, Dra05, Cam07, WH03].

The specific objective of this chapter is to identify the most potentially impactful

decision variables in the lunar outpost architecture in order to support the devel-

opment of an architecture which has a balanced approach to cost, risk, and value

delivery. The results of this chapter can be used to prioritize the architecting process.

The potential impact of some decisions must be identified early due to time-line con-

straints. For example, if NASA would like to develop a deployable semi-autonomous

nuclear reactor as an outpost power source, it should make this decision as early as

possible, since the development of a reactor requires a long lead time in terms of both

technical development and ensuring long-term political support [BCE+04].

NASA commissioned several studies to explore the technological challenges and

begin to set bounds on the architectural space. In particular, the ESAS study [Exp05]

and the LAT study[NAS06d] provide useful insights into the types of decisions NASA

is currently considering in it’s architecting process. In particular, “The Lunar Archi-

tecture Team Update”, Reference [NAS07], NASA provided a list of six categories

of decisions which it would like to address. These categories were: Transportation

Vehicles, Habitation, Rover, EVA Systems, Surface Power, and Communication.

In our study we used a slightly modified list of six categories. Instead of two

separate categories for Rover and EVA systems, the decisions relating to these issues

have been combined into one category: Surface Mobility. In addition, we have added

1At its peak, the Apollo program consumed 5% of the annual U.S. federal budget [Orl04]. Con-
trolling spending was not a high priority for the Apollo project [Sea05]. Detailed planning for lunar
science activities was minimal until the mid to late 1960’s [MC04].
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a new category called Campaign Strategy, which includes high-level decisions, such

as outpost locations. Table 5-1 lists the six categories. The two letter symbols next

to each name is used as abbreviations for the categories throughout this chapter.

Table 5-1: Categories of lunar outpost decisions.

category description
Campaign Strategy (CS) Decisions involving outpost placement and

campaign schedules.
Transportation Architecture (TA) Decisions involving the configuration of the

crew and equipment ascent from and descent
to the lunar surface.

Surface Mobility (SM) Decisions involving mobile landers and surface
rovers.

Outpost power (OP) Decisions involving how will power be gener-
ated and how energy will be stored.

Human Habitation (HH) Decisions involving the human habitation re-
quirements.

Communications (CM) Decisions involving communications infras-
tructure and requirements.

The next section explains how this architectural problem can be represented as a

decision problem through the use of ADG. By using ADG we gain some useful insight

into the problem. For example, we can determine which architectural decision has

have most potential impact and prioritize how they should be addressed.

5.3 Representing

Referring to the ADG cycle in Figure 3-1, this section transforms the available knowl-

edge about the lunar outpost architecture candidate space into an ADG representation

of the problem. This is achieved in the next four subsections by applying the four

guiding principles for transforming an architecture problem into a decision problem.

The details of the four principles were presented in Section 4.2.1.

5.3.1 Setting the Boundaries

The first guiding principle is to set of the boundaries of the architectural space under

consideration. In the previous section, we pointed out that certain bounds on the
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lunar outpost architectural space have already been set by policy statements and

congressional mandates. Specifically, in this study we assume that the form of the

lunar exploration program always includes a lunar lander system similar to the one in

Figure 5-1 and at least one long-term lunar outpost. The technical configuration of

the crew transfer vehicle is not a subject of this study since this part of the program

is already under development [NAS06c].

The “Lunar Architecture Update” document also provides a list of “options” under

consideration by NASA for the lunar exploration program. The term “option” is used

by NASA to describe unresolved technical decisions in the initial studies of lunar

outpost architecture [NAS07]. The bounds of the decision study should include these

decision variables. Specifically, the questions described in the Lunar Architecture

Update include:

• Should all elements of the lunar outpost be delivered with the crew?

• Should some elements be delivered by un-crewed landers?

• Should the outpost habitat be a single, large pre-integrated habitat or be as-

sembled from smaller modules?

• Should the lander be mobile? (Should it have the capability to move around

the lunar surface?)

• Should the architecture include long-range pressurized rovers?

• Should nuclear power be used as a power source for the lunar outpost the

surface?

Since these six questions are under active consideration by NASA, they should be

captured within the bounds of the lunar outpost decision study.

We also include the idea of an intermediate outpost [HSWC07] within the bounds

of this study. The intermediate outpost is a proposal for a pre-deployed, integrated,

medium-duration (6 to 25 weeks) lunar outpost. It would be delivered on a single un-

crewed cargo lander. The goal of the intermediate outpost is to provide a low-intial

investment option for gaining early exploration experience. Decisions about whether

to include or exclude the intermediate outpost and some questions about its location

and energy are considered within the bounds of this study.
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An additional bound on the study is that the decision variables included in this

study are limited to high-level technical and policy questions about whether to in-

clude or exclude certain elements or features in the lunar exploration campaign. The

study does not include decision variables about the details of individual instances of

lunar exploration campaigns, such as specific deployment schedules, transportation

logistics, or specific numbers, sizes, configurations of the elements. This bound was

set because the lunar outpost architecture is still in the early planning stages and

the objectives for the program are not nearly as specific as they were for Apollo.

The objective of this study is to measure the potential impact of changes in deci-

sion variables on the the set of available alternatives for other decisions as well as

the potential impact on system properties. By providing measures of the degree to

which these decision variables impact the system, the decision-making process can be

prioritized by the system architects.

5.3.2 Identify the Property Functions of Interest

The second guiding principle states that the property functions of interest should be

identified before developing the set of decisions. By identifying what types of prop-

erties we would like to calculate first, we can insure that that the decision variables

are inputs to these property functions. In Section 5.2 we indentified the architecting

goals of the lunar exploration program: controlling cost, controlling risk and deliver-

ing value to the exploration program’s stakeholders.

To measure the value delivery to stakeholders of the exploration program, we were

able to leverage the public documentation of NASA’s lunar exploration strategy. In

these documents, NASA describes six “guiding themes” for the lunar exploration

strategy[NAS06b, Tea07, CN06]: Human Civilization, Scientific Knowledge, Explo-

ration Preparation, Global Partnerships, Economic Expansion, and Public Engage-

ment. The themes, as defined by NASA, are presented in Figure 5-2.

The six themes are derived from the policy statements mentioned in Section 5.2

and are considered to be high-level objectives for the exploration program. Follow-

ing the second principle, we chose to calculate property functions that measure the

potential impact of the lunar outpost architecture to six property functions that are

aligned with each of the six guiding themes.

In addition to these six properties, there is a need to calculate an architecture’s

impact on programatic costs and risk. After several iterations building the ADG
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WHY THE MOON?
THE DAWN OF THE TRUE SPACE AGE LIES AHEAD OF US. 

In the not-too-distant future, people around the world will be able to look through 
a telescope and see evidence of human and robotic exploration on the moon. In 
2004, President Bush directed NASA to send humans back to the lunar surface 
– this time to stay – and to get ready for a journey to Mars. Since then, we’ve 
determined what transportation we’ll need, set goals for our activities, identified 
real benefits of exploring the moon, and even started building the spacecraft to 
get us there. We’ll spend 2007 maturing our ideas on the equipment that future 
lunar explorers will need to accomplish these exciting plans.

WHATEVER WE DO, IT WILL BE FOR THE BENEFIT  
OF ALL MANKIND. 

National Aeronautics and Space Administration

BECAUSE HUMANS 
EXPLORE

“The earth is the cradle of mind,  
but one cannot forever live in a cradle.” 

– Konstantin Tsiolkovsky, 1896

www.nasa.gov

Human Civilization
Extend human presence to the moon to enable  
eventual settlement. 

Scientific Knowledge
Pursue scientific activities that address our 
fundamental questions about the history of Earth, 
the solar system and the universe -- and about our 
place in them.

Exploration Preparation
Test technologies, systems, flight operations and 
exploration techniques to reduce the risks and 
increase the productivity of future missions to 
Mars and beyond.

Global Partnerships
Provide a challenging, shared and peaceful 
activity that unites nations in pursuit of common 
objectives.

Economic Expansion
Expand Earth’s economic sphere and conduct 
lunar activities with benefits to life on the home 
planet.

Public Engagement
Use a vibrant space exploration program to 
engage the public, encourage students and help 
develop the high-tech workforce that will be 
required to address the challenges of tomorrow.

Volosin_poster_8.5X11_1108.indd   1 11/13/06   3:54:20 PM

Figure 5-2: The six “guiding themes” for NASA’s Lunar Exploration program. (Source:
[NAS06b].)

model for the lunar outpost architecture study, it became evident that it would be

difficult to calculate a high-resolution metric for both cost or risk, since the study

deals with high-level questions like the ones listed in Section 5.3.1. Specific metrics

for cost and risk require knowledge of specific implementation of the architecture.

As a proximate metric2, we calculate the relative impact of technology alternatives

on programmatic development risk. The baseline assumption for this metric is that

an architecture that includes many difficult-to-implement technologies will be both

more costly and risky than an architecture that includes fewer difficult-to-implement

technologies.

The seven property functions are described in detail in Section 5.3.7.

5.3.3 Capture The Architecturally Distinguishing Decisions

The third principle states that we should limit the set of decision variables to the

architecturally distinguishing ones. An architecturally distinguishing decision is one

that potentially changes the architecture’s high-level concept, the mapping of function

to forms, of the architecture. Therefore, they can be used to define decision variables

that change the mapping of architectural functions to architectural forms.

In Reference [HWC07], Hofstetter, Wooster, and Crawley developed a modeling

abstraction called “campaign elements” which can be used to create high-level models

of lunar exploration campaigns which are under consideration by NASA. The abstrac-

2A proxy metric is a substitute measurement for something that is difficult to quantify in a direct
manner[RCL+05, LCCR06]
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tion partitions the architecture space by defining six types of elements that can be

included or excluded from an exploration campaign.

The campaign elements, which include two types of sortie missions, two types

of intermediate outposts, and two types of long-term outposts can be considered the

major building blocks of a lunar exploration program. In this decision space study, we

use their concept of campaign elements as a way to parameterize the lunar exploration

system. The definition of each campaign element can be derived from the hierarchy

of characteristics shown in Figure 5-3.

Figure 5-3: Derivation of campaign elements. (Source: [HWC07])

The six different campaign elements, A though F, are summarized in the follow

list. For additional details see Reference [HWC07].

Element A: Apollo-style sortie. Element A is a basic mission to the moon which

includes a lander with an ascent and decent stage. The habitation module is part

of the ascent stage. In this study, we assume that Element A always exists in

the lunar exploration system since it would also be used as crew transfer vehicle

for the intermediate and long-term outposts. In line with current NASA plans,

we assume a baseline design of a lander which is larger than Apollo’s lander.

It transports four crew as opposed to the two-crew Apollo Lunar Excursion

Module(LEM).

Element B: ESAS-style long sortie. Element B is an extended duration and capa-

bility version of Element A. The long sortie is characteristically different from

Element A because it provides for longer duration missions through additional
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habitable volume and/or an airlock module that may be left on the surface after

the crew leaves the lunar surface[Exp05]. 3

Element C: Stationary Intermediate Outpost. The intermediate lunar outpost con-

cept was explained in Reference [HSWC07]. An intermediate is a pre-deployed

integrated outpost which includes habitation, power generation, energy storage,

and possibly surface mobility equipment. The basic concept of an intermediate

outpost is that it would be delivered in one flight and crews would visit it using

Element A for durations of 6 to 25 weeks, depending on location.

Element D: Mobile Intermediate Outpost. The mobile outpost concept is a variant

of Element C. It is the same basic concept as element C, however it has the

ability to move to different locations on the surface in between crew visits.

Element E: Stationary Long-term Outpost. Element E is a long-term outpost which

has the goal of long-term continuous habitation. Element E may or may not

be delivered in an integrated form in the way that the intermediate outpost

would be. As a ground rule for this study we assume that all lunar outpost

architectures include Element E.

Element F: Mobile Long-term Outpost. Element F is a long-term outpost similar to

Element E, but has the ability to move around the surface to aid in exploration

of additional sites. However, as we point out in Section 5.3.4, Element F is

highly unlikely to be used since it requires transporting the outpost’s habitable

space, any associated ascent vehicles as well as power generation and energy

storage equipment while a crew is in residence.

A specific lunar exploration campaign can be designed by specifying different

numbers and sequences of the campaign elements. A campaign can be made up of a

mixture of Apollo-style sorties (type A), ESAS-style long sorties (type B), stationary

(type C) or mobile (type E) intermediate outposts, and a long term stationary (type

E) or mobile outpost (type F). Figure 5-4 show examples of three campaigns built

out of these elements. In this study, we assume that the lunar exploration program

would include either stationary or mobile intermediate outposts and either stationary

or mobile long-term outposts.

3The ESAS-style sortie is sometimes called the “Super Sortie”[NAS07].
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A B A B A B A B A B A B A B A B A B A B

Focus on long-term polar outpost Test A E E E E E E E E E E E E E E E E E E

Sortie, stationary intermediate and long-
term outposts (both polar) Test B C C C C C E E E E E E E E E E E E E

Sortie and stationary intermediate 
outposts (polar locations) Test B C C C C C C C C C C C C C C C C C C

Flight number
Year 3 Year 10Year 9Year 8Year 7Year 2Year 1 Year 6Year 5Year 4

Figure 5-4: Three example campaigns built from campaign elements. The overall goal of
each campaign is listed in the left column. The sequence for deploying the campaign
elements is listed in each row. (source: [HWC07])

5.3.4 Keep it Simple

The fourth principle from Section 4.2.1 states that the set of decisions should be kept

as small as possible, but not too small. Specifically, the goal is to exclude decision

variables that are not inputs to property functions or architecturally distinguishing.

Through the use of the abstraction of campaign elements, the large space of possible

campaigns is reduces to a small, finite set of building blocks which can be assembled

together to form instances of campaigns. This compression through the use of the

campaign element abstraction keeps the decision space as small as possible.

As pointed out in the section about the boundaries of the study (Section 5.3.1),

the study doesn’t include decisions about the transportation of the campaign elements

or supply logistics. The objective is to address the high-level questions about which

types of elements and technologies exist in the architecture.

The following four modeling assumptions were used in this study to simplify the

set of decision variables:

1. We assume that a long-term outpost campaign element (either E or F) is always

included in the campaign. Although other lunar campaigns are possible which

do not include a long-term outpost, the nature of this study about lunar outpost

architectures implicitly require that a long-term outpost exists.

2. There is no long-term mobile outpost (element F). Campaign element F is seen

as unlikely since it would require moving an outpost as well as a power system

and other necessary support equipment around the surface of the moon with

the crew. This operation is overly complex in the lunar environment.

3. We assume that campaign element A, the Apollo-style sortie, always exists in

the architecture since this element would be used at least once as a test flight
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and nominally as the crew transfer vehicle to and from long-term or intermediate

outposts.

4. We assume that the architecture may include either element C, or element D,

or neither element C or D. It may not include both element C and element D.

This is based on the modeling assumption that a mobile intermediate outpost

(element D) subsumes the functionality of a stationary intermediate outpost

(element C).

5.3.5 Lunar Outpost Decision Variables

This subsection lists the decision variables used in this study. They were derived

after several iterations of applying the four guiding principles for transforming the

architecture problem into a decision problem (described above). Table 5-2 is a list

of the decision variables for the lunar outpost in the form of a morphological matrix

(see Section 2.3.1). Following the table, is a list where each decision is described in

detail.

The set of decision variables includes variables from each of the six high-level

categories of decisions listed in Table 5-1. The decision variables used in this study

are primarily focused on determining which elements are included or excluded, their

high-level configuration, and allowed lunar locations of the elements in the exploration

campaign. In addition, two policy decisions are included: Which types of nuclear

power systems will be allowed and whether or not anytime return (see [Exp05]) is

required for the intermediate and/or long-term outpost.

CS:longSortie : include long sortie B, {no, yes}. This decision determines whether

or not campaign element B (ESAS-style extended sortie) is included in the

campaign.

CS:intOutpost : include intermediate outpost CD, {no, yes}. This decision deter-

mines whether or not one of the intermediate outpost elements, B or C, are

included in the campaign.

CS:intOutpostLoc : intermediate outpost locations allowed, {NA, polarOnly, eqAnd-

Polar, globalAccess}. This decision determines where intermediate outposts are

permitted. The alternative NA is used when this decision is not relevant.
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Table 5-2: Morphological Matrix of the Outpost Decisions.
cat shortID Decision units alt A alt B alt C alt D
CS longSortie include long sortie B none no yes
CS intOutpost include int outpost CD none no yes
CS intOutpostLoc int outpost locations allowed none NA polarOnly eqAndPolar globalAccess
CS outpostLoc outpost locations allowed none polarOnly eqAndPolar globalAccess
TA anytimeOutpost anytime return for outpost? none no yes
TA anytimeIntO anytime return for int outpost? none no yes
SM pressRov pressurized rover none no yes
SM mobileOutpost include mobile outpost D none no yes
OP outpostEnergyStorage outpost energy storage none none batteries fuelcell
OP outpostPowerGen outpost power generation none solar DIPS nucReactor
OP ioEnergyStorage IntOenergy storage none NA none batteries fuelcell
OP ioPowerGen IntOpower generation none NA solar DIPS
OP nuclearPolicy nuclear policy none none rtg_like rtg_like_or_fission
HH habGround ground level access for outpost none no yes
HH habOffload habitat offload for outpost none no yes
HH sepAirlock separate airlock required none no yes
HH longSortieHab long sortie habitat none NA airlockMod outpostHab other
HH habAssembly lunar surface hab assembly none no yes
HH pressConnections type of pressurized connections none none habRover habHab both
CM commRepeater need a repeater? none no yes
CM dataRate communications data rate none telemAndVideo HDLive
CM LOItelemetryReq is LOI telemetry required? none no yes

CS:outpostLoc : outpost locations allowed, {polarOnly, eqAndPolar, globalAc-

cess}. This decision determines which locations are permitted for the long-term

outpost.

TA:anytimeOutpost : Is anytime return required for the long-term outpost?, {no,

yes}. An anytime return requirement states that the crew must be able to return

to Earth within 5 days or less from any point on the lunar surface (see Chapter 4

of Reference [Exp05]). This requirement may limit where the long-term outpost

is placed on the lunar surface.

TA:anytimeIntO : Is anytime return required for the intermediate outpost?, {no,

yes}. An anytime return requirement states that the crew must be able to

return to Earth within 5 days or less from any point on the lunar surface (see

Chapter 4 of Reference [Exp05]). This decision may limit where an intermediate

outpost may be placed on the lunar surface.

SM:pressRov : pressurized rover, {no, yes}. This decision specifies whether or

not there is a pressurized rover available for surface exploration of the moon.

Pressurized rovers enable astronauts to spend more time away from the outpost.

SM:mobileOutpost : include mobile outpost D, {no, yes}. This decision specifies

whether or not a mobile outpost exists in the lunar campaign.

OP:outpostEnergyStorage : long-term outpost energy storage, {none, batteries,

fuelcell}. This decision determines the type of energy storage technology for the
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long-term outpost. In some case the energy storage technology is insignificant

because the outpost may be powered by a constant power source such as a

nuclear reactor or is placed at lunar pole such that it is illuminated by sufficient

sunlight. In this case, the alternative “none” is selected to indicate that the

energy storage technology is not significant (it could be short-term batteries or

open-loop fuel cells). The other two alternatives for energy storage are long-

term batteries and regenerative fuel cells.

OP:outpostPowerGen : long-term outpost power generation, {solar, DIPS, nu-

cReactor}. This decision determines if the outpost’s power is primarly gener-

ated by photovoltaic solar cells, DIPS (Dynamic Isotope Power System [Sch07,

Ker05]), or a fission reactor (nucReactor).

OP:ioEnergyStorage : intermediate outpost energy storage, {NA, none, batteries,

fuelcell}. This decision has the same set of alternatives as the long-term outpost

energy storage decisions with one addition. The alternative “NA” applies in the

case that this decision variable is irrelevant in the case there the intermediate

outpost is not included in the campaign.

OP:ioPowerGen : intermediate outpost power generation, {NA,solar, DIPS, nu-

cReactor}. This decision has the same set of alternatives as the long-term

outpost energy storage decision with one addition: The alternative “NA” ap-

plies in the case that this decision variable is irrelevant in the case there the

intermediate outpost is not included in the campaign.

OP:nuclearPolicy : nuclear policy, {no, rtg like, rtg like or fission}. This policy

decision indicates what types of nuclear technology is allowed. The option

rtg like indicates that an RTG (radioisotope thermoelectric generator) based

power sources, like DIPS [Sch07, Ker05] are allowed. The option rtg like or fission

indicates that RTG, DIPS, or nuclear reactors are allowed.

HH:habGround : ground level access for long-term outpost required, {no, yes}.
This decision indicates whether or not ground-level human access is required for

the outpost habitat. This policy decision affects other decisions about offloading

and airlock modules.

HH:habOffload : habitat offload for outpost, {no, yes}. This decision indicates
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whether or not the habitats for the long-term outpost will be offloaded from a

lander or remain on top of a lander.

HH:sepAirlock : separate airlock required, {no, yes}. This decision specifies whether

or not a separate airlock module is required. A separate airlock module may

be necessary if (lunar) ground access is required and from outpost habitats are

not offloaded from the lander.

HH:longSortieHab : long sortie habitat, {NA, airlockMod, outpostHab, other}.
If there is no long sortie (element B), then this decision is set to “NA”. If

there is a long sortie, the habitat can be a modification of the airlock module

(airlockMod), a modification of the long-term outpost habitat (outpostHab), or

custom module (other).

HH:habAssembly : lunar surface habitat assembly for the long-term outpost, {no,

yes}. This decision indicates whether or not assembly of separate habitats is

required for the lunar surface habitat.

HH:pressConnections : type of pressurized connections, {none, habRover, hab-

Hab, both}. This decision indicates the types of pressurized connections avail-

able in the systems architecture. The alternative none indicates no pressurized

connections. The alternative habRover indicates there are connections between

a pressurized rover and habitat modules. The alternatives habHab indicates

that there are pressurized connections between habitat modules. The alterna-

tive both indicates that there are both habRover and habHab connections.

CM:commRepeter : does the architecture include a communication repeater?,

{no, yes}. This decision indicates whether or not the architecture includes a

communications repeater in space to facilitate continuous communication from

the distal half of the moon to mission control on Earth. This repeater could be

placed in lunar orbit or at a Earth-moon Lagrange point [Far67].

CM:dataRate : communications data rate, {telemAndVideo, HDLive}. This deci-

sion specifies the bandwidth of the moon-Earth communication system. The al-

ternative telemAndVideo indicates that there is a standard amount of transmis-

sion bandwidth available. The alternative HDLive indicates that the bandwidth

is large enough to handle normal telemetry requirements as well as multiple live

high-definition digital television signals.
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CM:LOItelemetryReq : is LOI telemetry required?, {no, yes}. This decision indi-

cates whether or not Lunar orbit insertion telemetry is required. LOI telemetry

is operationally desirable since LOI burns occur on the far side of the moon.

5.3.6 Lunar Outpost Logical Constraints

The logical constraints for the outpost problem constrain the set of feasible combina-

tion of assignments to decision variables. Each constraint is listed in equational form

in table 5-3. The format of the Table is the same as the separable property table for

the example problem presented in Section 3.3.2. A explanation and justification for

each constraint is given in the following list:

airlockNeeded : scope:habGround,habOffload,sepAirlock. This three-way constraint

specifies that if ground access is required for the long-term outpost and the

outpost habitats are not offloaded, then there is a implied requirement for a

separate airlock module.

pressRoverConnection : scope:pressConnections,pressRov. This constraint says

that a pressurized rover must exist for pressurized connections to be set to

either (habRover) or (both).

habPressConnection : scope:pressConnections,habAssembly. This constraint re-

quires that if the architecture includes habitat assembly, it must also include

pressurized connections between habitats.

assemblyOffloadConstraint : scope:habAssembly,habOffload. This constraint re-

quires that if the long-term outpost habitat is assembled, then it is implied that

the outpost habitat must be offloaded from a lander.

longSortieHabCommon : scope:habAssembly,longSortieHab. This constraint re-

lates the decision about the habitat assembly to the decision about the long

sortie habitat. If the outpost habitat is assembled, this constraint allows the

outpost habitat to be a common module with the long sortie habitat. However,

if the outpost hab is not assembled, this implies that it is a large module, there-

fore the constraint does not allow the long sortie habitat to be common with

the outpost habitat.
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Table 5-3: Logical Constraints for the Lunar Outpost Problem.
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longSortieHabConstraint : scope:longSortie,longSortieHab. This constraint spec-

ifies that if there is no long sortie, then the decision about the long sortie habitat

is not applicable (set to the NA alternative).

longSortieAirlockMod : scope:sepAirlock,longSortieHab. This constraint speci-

fies that if there is a separate airlock module, then the set of feasible alterna-

tives for the decision variable longSortieHab includes the alternative to modify

the airlock to be used as a long sortie habitat. If there is no separate airlock

module, then that alternative is not feasible.

nucConstraint : scope:nuclearPolicy,outpostPowerGen. This constraints links the

nuclear policy to the available technologies for the long-term outpost’s power

generation. A nuclear policy of “none” restricts power generation on the lunar

surface to solar power only. The alternative “rtg like” enables either non-fissile

nuclear power generation (DIPS) or solar power generation. The alternative

“rtg like or fission” enables all three types of power generation: nuclear reactor,

DIPS, or solar.

nucConstraintIntO : scope:nuclearPolicy,ioPowerGen. This constraint links nu-

clear policy with the intermediate outpost’s power generation technology. A

nuclear policy of “none” restricts power generation on the lunar surface to solar

power only. The alternative “rtg like” enables either non-fissile nuclear power

generation (DIPS) or solar power generation.

mobileOutpostLocation : scope:mobileOutpost,intOutpostLoc. This constraint

links the decision of whether or not to have a mobile intermediate outpost with

the locations for an intermediate outpost. If the mobile outpost exists, this

constraint eliminates the possibility of “polarOnly”. In this case, it would make

more sense to use a stationary outpost and cover the polar circle with pressurized

rovers. If the mobile intermediate outpost was moved beyond the polar circle, it

would lose its anytime abort capability as well as need a different energy storage

system. In this decision model, the possibility of having a mobile intermediate

outpost placed at the poles is preserved by allowing the location option of

“globalAccess”. However, if global access is selected, the mobile intermediate

outpost must also meet the power, energy storage, and abort requirements

constrained by global access.
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outpostLocationEnergy : scope: outpostEnergyStorage,outpostPowerGen,outpostLoc.

This three-way constraint links the energy storage technology for the long-term

outpost with its location and power generation technology. If the allowed long-

term outpost location is global access, then batteries are not a feasible energy

storage device for storing 14 days of energy (the lunar night) if solar power is

the primary power source. If the outpost location is polar or if solar power is

not used, then all energy storage options are available.

ioLocationEnergy : scope: ioEnergyStorage,ioPowerGen, intOutpostLoc. This

three-way constraint links the energy storage technology for the intermediate

outpost with its location and power generation technology. If the allowed in-

termediate outpost location is global access, then batteries are not a feasible

energy storage device for storing 14 days of energy (the lunar night) if solar

power is the primary power source. If the outpost location is polar or if solar

power is not used, then all energy storage options are available.

ioMobileConstraint : scope:intOutpost,mobileOutpost. This constraint requires

that the decision variable determining whether or not there is an intermediate

outpost is set to “yes” in order for the variable determining whether or not

there is a mobile intermediate outpost to be set to “yes”.

ioLocConstraint : scope:intOutpost,intOutpostLoc. This constraint states that if

there is no intermediate outpost, then the location of the intermediate outpost

is constrained to the alternative “NA”.

anytimeIntOconstraint : scope:anytimeIntO,intOutpostLoc. This constraint states

that if anytime return is required for the intermediate outpost, then the alter-

native “globalAccess” for the intermediate outpost’s location is not allowed.

See the decision variable anytimeOutpost for the details of the anytime return

requirement.

anytimeOutConstraint : scope:anytimeOutpost,outpostLoc. If anytime return is

required for the long-term outpost, then the alternative “globalAccess” for out-

post’s location is not allowed. See the decision variable anytimeOutpost for the

details of the anytime return requirement.

ioEnergyConstraint : scope:intOutpost,ioEnergyStorage. This constraint states

that if there is no intermediate outpost (intOutpost=no), then the intermediate
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outpost energy storage technology decision variable is not applicable (ioEner-

gyStorage=NA).

ioPowerGenRequired : scope:intOutpost,ioPowerGen. This constraint states that

if there is no intermediate outpost, then the power generation technology for

the intermediate outpost is NA.

LOItelemetry : scope:LOItelemetryReq,commRepeater. This constraint states that

if lunar orbit insertion telemetry is required, then the architecture must include

an in-space communications repeater.

5.3.7 Lunar Outpost Property Variables and Property Functions

Section 5.3.2 identified seven system properties of interest. In this section, the details

of these seven properties and their associated property functions are listed. Six of

the property functions approximate how a particular decision contributes to each of

NASA’s six themes for the exploration program. In addition to these six beneficial

measures of performance, the seventh metric measures how particular alternatives for

a decision variable contributes to the development risk of the exploration program.

The seven metrics are listed in Table 5-4.

Table 5-4: Lunar Outpost Property Functions.

shortName Description type

devRiskFunc Development Risk multiplicitive
humanCivFunc Human Civilization benefit additive
scienceKnowledgeFunc Science Knowledge benefit additive
marsPrepFunc Mars Exploration Preparation benefit additive
globalPartnershipsFunc Global Partnerships benefit additive
econExpansionFunc Economic Expansion benefit additive
publicEngFunc Public Engagement benefit additive

As explained in Section 5.3.2, the development risk property function is used as a

proximate metric to measure the impact on programmatic cost and risk. The calcu-

lation of development risk (devRiskFunc) is done using a standard probabilistic risk

assessment approach, similar to the ones presented in Section 3.3.2 for the example

problem and Section 4.2.5 for the Apollo problem. Alternatives were given risk scores

of 1.00 for no effect on risk, 0.99 a small increase in risk, 0.95 for a moderate increase
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in risk, and 0.92 for a large increase in risk. The development risk property function

is a multiplicatively separable function (see Section 3.3.1). The values in for devel-

opment risk listed in Tables 5-5, 5-6, and 5-7 were gathered through the a survey of

aerospace experts.

The six other property functions were developed by mapping the data from a

NASA study of two hundred specific lunar exploration objectives (see Reference

[NAS06a]) onto additively separable property functions for each lunar exploration

theme. These property functions quantify how strongly the selection of an alterna-

tive for a decision variable potentially benefits the lunar exploration program in one

of the six themes. The entries in the property table for a decision variable’s alterna-

tive can be either 0, 1, or 2. An entry of 0 indicates that a particular alternative for

a decision does not positively effect that property. An entry of 1 indicates that this

alternative is likely to positively effect that property. An entry of 2 indicates that

the alternative has a strong positive effect on that property. Detailed descriptions of

each property variable and the rules for how the benefit scores were assigned to each

property function are listed below:

Human Civilization Property. Goal: “Extend human presence to the Moon to

enable eventual settlement.”

Rules: 0 = no direct effect on human civilization goals, 1 = directly provides

technologies or experience benefitting human civilization goals, 2=provides ex-

tensive experience or provides critical technology development advancing human

civilization goals.

Science Knowledge Property. Goal: “Pursue scientific activities that address fun-

damental questions about the history of Earth, the solar system and the universe

– and about our place in them.”

Rules: 0 = no direct benefit for science goals, 1 = directly provides technolo-

gies or opportunities to increase scientific data gathering, 2 = provides critical

technologies or provides opportunities for extensive scientific data gathering.

Mars Exploration Preparation Property. Goal: “Test technologies, systems, flight

operations and exploration techniques to reduce the risks and increase the pro-

ductivity of future missions to Mars and beyond.”

Rules: 0 = no direct impact on Mars exploration preparation goals, 1 = directly
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provides necessary exploration experience or technologies needed for Mars explo-

ration, 2 = provides extensive experience or technologies which would strongly

benefit Mars exploration preparation goals.

Global Partnerships Property. Goal:“Provide a challenging, shared and peaceful

activity that unites nations in pursuit of common objectives.”

Rules: 0 = provides no direct impact on global partnership goals, 1 = directly

provides an opportunity for participation by international partners, 2 = strongly

benefits global participation goals.

Economic Expansion Property. Goal:“Expand Earth’s economic sphere, and con-

duct lunar activities with benefits to life on the home planet.”

Rules: 0 = no direct impact on economic expansion goals, 1 = provides an

opportunity or technology which may be beneficial to commercial stakeholders,

2 = provides a technology or opportunity which provides an especially strong

benefit towards economic expansion due to lunar exploration.

Public Engagement Property. Goal: “Use a vibrant space exploration program

to engage the public, encourage students and help develop the high-tech work-

force that will be required to address the challenges of tomorrow.”

Rules: 0 = no direct impact on public engagement, 1 = directly provides a

means for increased public awareness or participation, 2 = strongly impacts

public interest, awareness, or participation in the lunar exploration program.

The value of each decision variable’s alternative’s effect on the property functions

are listed in Tables 5-5, 5-6, and 5-7.
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Table 5-5: Lunar Outpost Separable Property Table 1/3. This table is continued in the
next figure.
cat shortID Decision units alt A alt B alt C alt D
CS longSortie include long sortie B none no yes
prop devRisk mult 1 0.95
prop humanCiv add 0 0
prop scienceKnowledge add 0 1
prop marsPrep add 0 0
prop globalPartnerships add 0 0
prop econExpansion add 0 0
prop publicEng add 0 1
SM pressRov pressurized rover none no yes
prop devRisk mult 1 0.95
prop humanCiv add 0 1
prop scienceKnowledge add 0 1
prop marsPrep add 0 1
prop globalPartnerships add 0 0
prop econExpansion add 0 0
prop publicEng add 0 1
HH habGround ground level access for outpost none no yes
prop devRisk mult 1 0.95
prop humanCiv add 0 1
prop scienceKnowledge add 0 0
prop marsPrep add 0 1
prop globalPartnerships add 0 0
prop econExpansion add 0 0
prop publicEng add 0 0
HH habOffload habitat offload for outpost none no yes
prop devRisk mult 1 0.92
prop humanCiv add 0 1
prop scienceKnowledge add 0 0
prop marsPrep add 0 0
prop globalPartnerships add 0 0
prop econExpansion add 0 0
prop publicEng add 0 0
HH sepAirlock separate airlock required none no yes
prop devRisk mult 1 0.99
prop humanCiv add 0 0
prop scienceKnowledge add 0 0
prop marsPrep add 0 0
prop globalPartnerships add 0 0
prop econExpansion add 0 0
prop publicEng add 0 0
HH longSortieHab long sortie habitat none NA airlockMod outpostHab other
prop devRisk mult 1 0.95 0.95 0.95
prop humanCiv add 0 0 0 0
prop scienceKnowledge add 0 0 0 0
prop marsPrep add 0 0 0 0
prop globalPartnerships add 0 0 0 0
prop econExpansion add 0 0 0 0
prop publicEng add 0 0 0 0
HH habAssembly lunar surface hab assembly none no yes
prop devRisk mult 1 0.95
prop humanCiv add 0 1
prop scienceKnowledge add 0 0
prop marsPrep add 0 0
prop globalPartnerships add 0 0
prop econExpansion add 0 0
prop publicEng add 0 0
HH pressConnections type of pressurized connections none none habRover habHab both
prop devRisk mult 1 0.95 0.95 0.92
prop humanCiv add 0 1 1 1
prop scienceKnowledge add 0 0 0 0
prop marsPrep add 0 0 0 0
prop globalPartnerships add 0 0 1 1
prop econExpansion add 0 0 0 0
prop publicEng add 0 0 0 0
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Table 5-6: Lunar Outpost Separable Property Table 2/3. This table is continued on the
next page.
cat shortID Decision units alt A alt B alt C alt D
CS intOutpost include int outpost CD none no yes
prop devRisk mult 1 0.95
prop humanCiv add 0 1
prop scienceKnowledge add 0 1
prop marsPrep add 0 1
prop globalPartnerships add 0 0
prop econExpansion add 0 0
prop publicEng add 0 1
SM mobileOutpost include mobile outpost D none no yes
prop devRisk mult 1 0.95
prop humanCiv add 0 1
prop scienceKnowledge add 0 1
prop marsPrep add 0 1
prop globalPartnerships add 0 0
prop econExpansion add 0 1
prop publicEng add 0 1
CS intOutpostLoc int outpost locations allowed none NA polarOnly eqAndPolar globalAccess
prop devRisk mult 1 0.95 0.95 0.95
prop humanCiv add 0 1 1 2
prop scienceKnowledge add 0 1 1 2
prop marsPrep add 0 0 0 0
prop globalPartnerships add 0 0 0 0
prop econExpansion add 0 0 0 1
prop publicEng add 0 0 0 0
CS outpostLoc outpost locations allowed none polarOnly eqAndPolar globalAccess
prop devRisk mult 1 0.95 0.92
prop humanCiv add 1 1 2
prop scienceKnowledge add 1 1 1
prop marsPrep add 0 0 0
prop globalPartnerships add 0 0 0
prop econExpansion add 0 0 0
prop publicEng add 0 0 0
TA anytimeOutpost anytime return for outpost? none no yes
prop devRisk mult 1 0.95
prop humanCiv add 0 0
prop scienceKnowledge add 0 0
prop marsPrep add 0 0
prop globalPartnerships add 0 0
prop econExpansion add 0 0
prop publicEng add 0 0
TA anytimeIntO anytime return for int outpost? none no yes
prop devRisk mult 1 0.95
prop humanCiv add 0 0
prop scienceKnowledge add 0 0
prop marsPrep add 0 0
prop globalPartnerships add 0 0
prop econExpansion add 0 0
prop publicEng add 0 0
OP outpostEnergyStorage outpost energy storage none none batteries fuelcell
prop devRisk mult 1 0.99 0.92
prop humanCiv add 0 0 0
prop scienceKnowledge add 0 0 0
prop marsPrep add 0 0 1
prop globalPartnerships add 0 0 0
prop econExpansion add 0 0 0
prop publicEng add 0 0 0
OP outpostPowerGen outpost power generation none solar DIPS nucReactor
prop devRisk mult 1 0.95 0.92
prop humanCiv add 0 1 2
prop scienceKnowledge add 0 1 1
prop marsPrep add 0 1 1
prop globalPartnerships add 0 0 0
prop econExpansion add 0 1 1
prop publicEng add 0 0 0
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Table 5-7: Lunar Outpost Separable Property Table 3/3.
cat shortID Decision units alt A alt B alt C alt D
OP ioEnergyStorage IntOenergy storage none NA none batteries fuelcell
prop devRisk mult 1 1 0.95 0.92
prop humanCiv add 0 0 0 0
prop scienceKnowledge add 0 0 0 0
prop marsPrep add 0 0 0 1
prop globalPartnerships add 0 0 0 0
prop econExpansion add 0 0 0 0
prop publicEng add 0 0 0 0
OP ioPowerGen IntOpower generation none NA solar DIPS
prop devRisk mult 1 1 0.95
prop humanCiv add 0 0 1
prop scienceKnowledge add 0 0 1
prop marsPrep add 0 0 1
prop globalPartnerships add 0 0 0
prop econExpansion add 0 0 1
prop publicEng add 0 0 0
OP nuclearPolicy nuclear policy none none rtg_like rtg_like_or_fission
prop devRisk mult 1 1 1
prop humanCiv add 1 0 0
prop scienceKnowledge add 0 0 0
prop marsPrep add 0 0 0
prop globalPartnerships add 0 0 0
prop econExpansion add 0 0 0
prop publicEng add 0 0 0
CM commRepeater is there a repeater? none no yes
prop devRisk mult 0.99 1
prop humanCiv add 0 0
prop scienceKnowledge add 0 0
prop marsPrep add 0 0
prop globalPartnerships add 0 0
prop econExpansion add 0 0
prop publicEng add 0 0
CM dataRate communications data rate none telemAndVideo HDLive
prop devRisk mult 1 1
prop humanCiv add 0 0
prop scienceKnowledge add 0 0
prop marsPrep add 0 0
prop globalPartnerships add 0 0
prop econExpansion add 0 1
prop publicEng add 0 1
CM LOItelemetryReq is LOI telemetry required? none no yes
prop devRisk mult 1 1
prop humanCiv add 0 0
prop scienceKnowledge add 0 0
prop marsPrep add 0 0
prop globalPartnerships add 0 0
prop econExpansion add 0 0
prop publicEng add 0 0

5.3.8 Lunar Outpost Architecture Decision Graph

In previous chapters, we have shown the complete view, the logical view, and the

properties view of the ADG. In this chapter, the logical view is especially of interest.

The complete view and property view are shown in Appendix B.

The logical view of the architecture decision graph for lunar decision problem is

shown in Figure 5-5. This particular logical view illustrates an interesting property of

the decision problem formulation for the lunar outpost architecture problem. The vi-

sualization of the ADG clearly shows that it is composed of two logically independent

subgraphs. They can be considered logically independent since the two subgraphs are

not connected by any logical constraints.

The implication of the two logically independent subgraphs is that there are two

subsets of decisions which are not logically connected to each other. Since all property

functions in this study are additive or multiplicative separable functions (see 3.3.1),
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this decision problem can be divided into two separate subproblems.

Figure 5-5 identifies these two subproblems as Part A and Part B. Part A, is

composed entirely of decisions from the categories of campaign strategy (CS) and

human habitation (HH). Part B is composed of problems decisions from the categories

of communications (CM), outpost power (OP), and surface mobility (SM).

By dividing up the problem into two separate ADG decision analysis problem, we

can save on computational effort, since the computational effort scales exponentially

with the number of decision variables (see Section 3.7.2). Since the decisions in Part

A do not depend on the decisions in Part B, the logical constraints between these

decisions can be evaluated separately. Furthermore, since all seven property functions

used in this study are separable property functions, they can be evaluated separately

for Part A and Part B.

The visual inspection of the structure of the ADG can be considered a form of

structural reasoning. This a similar to the discussion in Sections 4.2.6 and 4.3 for

the Apollo problem, where certain disconnected parts of the problem were identified.

The Apollo problem could not be separated because its decision variables were con-

nected by non-separable properties. But, in the case of the Lunar Outpost problem,

we can take this structural reasoning information a step further and use it divide

the problem into two computational problems, since the property functions for the

lunar outpost ADG are all separable functions. Each of the two subproblem requires

fewer computational resources, since the computational resource requirements grow

exponentially with the number of decision variables in the ADG (see Section 3.7.2).
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Figure 5-5: Lunar outpost ADG – logical view. Decision variables are green rectangles and
logical constraints are blue ellipses. Note that property variables and property functions
are not shown in the logical view of an ADG (see Section 3.3.2. Visual Inspection
of the logical view immediately indicates that the logical constraints for the decision
problem can be divided into two categories which are not connected though logical con-
straints: Part A (Human Habitation and Surface Mobility) and Part B (Transportation,
Communications, Power, and Surface Mobility).
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5.4 Structural Reasoning

The structural reasoning process is the second process in the ADG cycle (Figure 3-1).

It involves analyzing the structure of the ADG and producing structural information

about the decision problem. It was pointed out that visual inspection of the ADG is

a form of structural reasoning. This section calculates some formal structural prop-

erties of the decision variables by applying the two structural reasoning algorithms,

ADGsort1 and ADGsort2, introduced in Section 3.4 to each of the two parts of the

ADG.

The results of ADGsort1 and ADGsort2 are presented in Tables 5-8 and 5-9.

ADGsort1 determines the degree of connectivity between decisons. This is a first

order measure of how many decisions are directly connected through adjacent logical

constraints. ADGsort2 is an alternative measure of the structural properties of the

ADG which adjusts the degree of connectivity by subtracting the size of each decision

variable’s set of alternatives. Specific descriptions of these algorithms are contained

in Section 3.4.

Table 5-8: Results of ADGsort1 for the outpost decision problem.

decision deg. of conn. decision deg. of conn.
pressConnections 2 mobileOutpost 2

sepAirlock 3 LOItelemetryReq 1
longSortie 1 intOutpost 4

longSortieHab 3 dataRate 0
pressRov 1 intOutpostLoc 5

habOffload 3 anytimeOutpost 1
habAssembly 3 outpostLoc 3
habGround 2 ioEnergyStorage 3

anytimeIntO 1
commRepeater 1
ioPowerGen 4

outpostEnergyStorage 2
nuclearPolicy 2

outpostPowerGen 3

The primary purpose of applying the structural reasoning algorithms to the ADG

is to provide a heuristic to enhance simulation performance. The values for either

degree of connectivity or sort2rank are used to guide the construction of an executable

OPN model. The impact of structural reasoning results on the efficiency of decision

problem simulation is discussed in Section 5.7.1.
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Table 5-9: Results of ADGsort2 for the outpost decision problem.

decision sort2rank decision sort2rank
pressConnections -2 mobileOutpost 0

sepAirlock 1 LOItelemetryReq -1
longSortie -1 intOutpost 2

longSortieHab -1 dataRate -2
pressRov -1 intOutpostLoc 1

habOffload 1 anytimeOutpost -1
habAssembly 1 outpostLoc 0
habGround 0 ioEnergyStorage -1

anytimeIntO -1
commRepeater -1
ioPowerGen 1

outpostEnergyStorage -1
nuclearPolicy -1

outpostPowerGen 0

From a systems engineering management perspective, the results can also be used

for task prioritization and scheduling. A high ranking in terms of degree of connec-

tivity indicates that a decision is highly connected. In this example, the intermediate

outpost location (intOutpostLoc) decision variable is connected to five other decisions

through logical constraints (degree of connectivity=5). This indicates that a change

in the intOutpostLoc decision variable may impact the set of available alternatives

for at least five other decision variables. From the ADG in Figure 5-5, we can see

that these five decision variables are: ioEnergyStorage, ioPowerGen, anytimeIntO,

mobileOutpost, and intOutpost. On the other extreme, the communications data

rate decision variable (dataRate) is not logically connected to other decision variables

(degree of connectivity=0). A change in communications data rate does not change

the set of available alternatives for any other decisions.

This information derived from the degree of connectivity is useful to an engineer-

ing manager. It implies that a team considering the intermediate outpost location

decision variable must collaborate with any other teams considering the five other

connected decision variables. On the other extreme, a team considering the dataRate

decision variable can choose one of its alternatives without considering how it would

impact the available alternatives for the other architectural decision variables.

From a higher-level point of view, the structural reasoning results indicate that

two separate engineering groups could consider the decisions in Part A separately

from the decisions in Part B. The two groups could study the feasibility of different
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combinations of alternatives without the need to coordinate their sets of decision

variable assignments with the other team.

5.5 Simulation

The simulating process is the third process in the ADG cycle (Figure 3-1). It involves

transforming the structural information about the ADG into an executable OPN

model and then using the OPN model to produce a set of feasible combinations of

decision variable assignments and their properties, C. The algorithm for completing

this task, OPNbuild1, is described in detail in Section 3.5. Since this ADG was

separated into two logically disconnected parts, simulation of the ADG was completed

by building two separate OPNs using the OPNbuild1 algorithm (Algorithm 3.3).

The two OPN models corresponded to Part A and Part B of the ADG4. OPNbuild1

requires a decision variable ordering as one of its inputs. For the lunar outpost

decision problem, the results of ADGsort2 were used (Table 5-9).

The result of the simulation is an data set consisting of the feasible combinations

of assignments to the decision variables and the value of their properties, which sat-

isfy all constraints. For part A, 186 feasible combinations of decisions were produced

out of a total combinatorial space consisting of 1024 combinations of decision vari-

able assignments. For part B, 47659 feasible combinations of decisions were produced

out of a total combinatorial space consisting of 497664 combinations of decision vari-

able assignments5. The results of the simulation are presented in the next section.

The impact of the two different variable ordering algorithms on the efficiency of the

simulation performance is discussed in Section 5.7.1.

5.6 Viewing

The fourth process of the ADG cycle (Figure 3-1) is decision data viewing. The

viewing process transforms the feasible combinations of decision variable assignments

and their properties, C, into new available knowledge for the decision-maker. In this

section, we use the decision space view plots to analyze the data.

4Visualizations of the two OPN executable models are omitted from this chapter for brevity.
5The total size of the combinatorial space is calculated by suspending the logical constraints.
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5.6.1 Decision Space Views

Since the problem was divided into two parts, different decision space views were

created for part A and part B for each metrics. For each figure in this section, the

decisions in Part A are shown in the left plot and the decisions for Part B are shown

in the right plot. Definitions for each property variable and function were presented

in Section 5.3.7. Property Variable Sensitivity (PVS) is defined in Section 3.6.1. PVS

is a measure of the potential impact of a change in a decision variable on a system

property. It is a measure of the magnitude of the shift in the property function’s

mean value over the entire set of feasible combinations of decisions due to a change

in a decision variable assignment.
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Figure 5-6: Decision Space View for the development risk property. Decisions in Part A
are shown in the left plot,and decisions in Part B are shown in the right plot.

Figure 5-6 is the decision space view for the development risk property. The

development risk property is a proximate measure for both the cost and difficulty of

a campaign.

The plot on the left of Figure 5-6 refers part A. The decisions that are both

strongly connected and sensitive are decisions about habitat ground access, habitat

offloading, and habitat assembly. Intuitively, this makes sense since these decisions

will define the interfaces between surface elements and, to some degree, the long-term

152



capabilities of the outpost.

Note that the decisions about whether or not there will be pressurized rovers and

long sorties (campaign element B) do not have a high degree of potential impact

on development risk. This also makes intuitive sense, since these two decisions are

related to enhancements to the architecture which could be added to the architecture

at any time during the outpost’s life cycle. This result agrees with the findings in the

Lunar Architecture Update [NAS07], which concluded that a pressurized lunar rover

could be added to any campaign architecture.

The plot on the right of Figure 5-6 refers to part B. In this group of decisions, the

ones that are the most strongly connected and potentially impactful on development

risk are the ones related to the intermediate outpost. Specifically, the intermediate

outpost’s existence, location, power generation method, and energy storage technol-

ogy. Note that PVS measure does not indicate that including an intermediate outpost

will increase development risk, it indicates that changing the decisions about the in-

termediate outpost can effect development risk. This change can be either up or

down.
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Figure 5-7: Decision Space View for the Mars preparation property. Decisions in Part A
are shown in the left plot,and decisions in Part B are shown in the right plot.

Figure 5-7 is the decision space view for the Mars exploration preparation prop-

erty. This property measures how a particular set of decisions may improve NASA’s
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preparation for human exploration of Mars. It is an estimated version of the Mars

Exploration Readiness Level metric presented in Reference [Kle05].

For Part A, decisions about habitat ground access requirements and habitat of-

floading are both highly impactful in terms of connectivity to other decisions and

impact on the Mars preparation property. This is because in the case of Mars explo-

ration, it is more likely that the Mars surface habitat will either be a pre-deployed,

integrated habitat or double as the Earth to Mars in-space habitat. Habitat offload-

ing, assembly, and direct ground access restrictions introduce operational complica-

tions that would be undesirable on a Mars exploration mission due to difficulties in

aborting the mission.[WDR93, Hof04, ZBG91, Dra05].

For Part B, the most sensitive and strongly connected decisions are related to the

lunar intermediate outpost: whether or not it exists, the power generation method,

the energy storage technology, and the intermediate outpost location. Following the

argument above, this makes intuitive sense, since the intermediate outpost is an

integrated outpost that is delivered to the lunar surface on one uncrewed lander.

This type of habitat design is more similar to the one that could be used for Mars

exploration[Dra05, Zub97, WDR93].

Additionally, the intermediate outpost decision impacts Mars preparation because

the study used the modeling assumption that an intermediate outpost could be de-

ployed earlier in the program at lower cost. This would provide earlier surface EVA

experience, resulting in useful data during the planning stages of Mars exploration

effort.

Of note is the position of the nuclear policy decision in the decision space view for

Part B. It is in the category of weakly connected and insensitive decision variables

(lower left quadrant). This results is aligned with the assumptions of previous studies,

which have shown that nuclear power generation is helpful, but not required for Mars

exploration[Dra05, Woo07].

Public Engagement

Figure 5-8 is the decision space view for the public engagement property. This prop-

erty measures how a particular set of decisions may help “engage the public, encourage

students and develop a high-tech workforce”.

For Part A, the strongly connected and sensitive decisions include decisions about

the type of long sortie habitat and pressurized connections. Decisions about pressur-
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Figure 5-8: Decision Space View for the public engagement property. Decisions in Part A
are shown in the left plot,and decisions in Part B are shown in the right plot.

ized rovers and long sorties are also relatively high on the property variable sensitivity

axis, but not on the degree of connectivity axis. These decision variables are likely

to affect increased public engagement in the lunar exploration program because they

affect the number of interesting events in the exploration program. Long sortie mis-

sions and pressurized rovers will allow astronauts to visit interesting lunar sites more

often. If the architecture includes pressurized connections, it may imply that there

are more habitat assembly events, which may catch the public’s interest.

For Part B, the decision variables which are the most highly connected and have

the highest degree of property variables sensitivity are the intermediate outpost deci-

sions. An architecture that includes an intermediate outpost allows for earlier explo-

ration in comparison to one that relies on one or a few long-term outposts. Earlier

exploration return will give NASA earlier opportunities to engage the public in the

lunar exploration program. Additionally, the idea of a mobile intermediate outpost

has the potential to allow more events of public interest because the outpost could

move around the surface of the moon between crew visits.

Also in Part B, the data rate decision has the potential to affect public engagement.

By providing live high definition television signals from the surface of the moon,

members of the public could be actively engaged in the activities on the moon. In

particular, high-speed bi-directional communication could create opportunities for

direct interaction between educational groups and the astronauts.
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Global Partnerships
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Figure 5-9: Decision Space View for the global partnerships property. Decisions in Part A
are shown in the left plot,and decisions in Part B are shown in the right plot.

Figure 5-9 is the decision space view for the global partnerships property. This

property measures how a particular set of decisions may help “provide a challenging,

shared and peaceful activity that unites nations in pursuit of common goals”.

There is only one decision that stands out in the decision space view for this metric.

It is the decision about what types of pressurized connections will be used. In the

separable property Table (see Table 5-5 on page 144), choosing alternatives C or D

allows for pressurized connections between habitats. By choosing this configuration,

global participation may increase since foreign space agencies could build separate

habitat modules and connect them to NASA’s outpost modules.

Other decisions do not rank highly in this metric since none of them have a direct

impact on the ability to provide opportunities for global participation. Global partic-

ipation could take place at the module level, like it is done for the International Space

Station, or at the technology development, equipment supply, or scientific analysis

level. The decision variables in this study, besides the decision variable for pressurized

connections, do not enhance or limit the opportunities for global participation in any

particular way.

Economic Expansion
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Figure 5-10: Decision Space View for the economic expansion property. Decisions in Part
A are shown in the left plot, and decisions in Part B are shown in the right plot.

Figure 5-10 is the decision space view for the economic expansion property. This prop-

erty measures how a particular set of decisions may help “expand earth’s economic

sphere, and conduct lunar activities with benefits to life on the home planet.”

The decisions in Part A, which are in the decision categories of campaign strategy

and human habitation do not have a strong impact on economic expansion. None of

these decision variables, which are in the categories of human habitation and surface

mobility have a direct connection to economic expansion. However, the decisions

in Part B, which are in the categories of transportation, communications, power,

and surface mobility, have some impact. Specifically, the decision variables that are

related to long-term and intermediate outpost locations on the lunar surface and

power generation technologies are sensitive and strongly connected. This is due to an

assumption in the economic expansion property function that greater coverage of the

lunar surface and readily available power would provide benefits to economic activity

on the moon, such as mining or space tourism.

Science Knowledge

Figure 5-11 is the decision space view for the science knowledge property. This prop-

erty measures how a particular set of decisions may help “pursue scientific activities

that address fundamental questions about the history of the Earth, the solar system,

and the universe.”
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Figure 5-11: Decision Space View for the science knowledge property. Decisions in Part
A are shown in the left plot, and decisions in Part B are shown in the right plot.

For the science knowledge property the decisions which have the greatest potential

impact are the decisions about the pressurized rover, the long sortie, the long sor-

tie habitat, the existence of intermediate outpost, the intermediate outpost’s power

generation and the intermediate outpost’s location. The decisions about the interme-

diate outpost energy storage technology, pressurized connections and the existence of

a mobile outpost are also impactful, in terms of property variable sensitivity, but not

as strongly connected.

In general, the decision variables that have the biggest affect on science knowledge

are generally the ones which affect the number of sites and rate of scientific data gath-

ering. In particular the existence of long sorties, pressurized rovers, and intermediate

outposts as well as global access to the lunar surface increase the scientific knowledge

property.

Human Civilization

Figure 5-12 is the decision space view for the human civilization property. This

property measures how a particular set of decisions may help “extend human presence

to the Moon to enable eventual settlement.”

For Part A, the most sensitive and strongly connected decisions are in regards to

the habitat ground access requirement, habitat offloading, habitat assembly, and pres-

surized connections. These decisions are sensitive since the technology development
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Figure 5-12: Decision Space View for the civilization property. Decisions in Part A are
shown in the left plot, and decisions in Part B are shown in the right plot.

and experience gained through offloading and assembling habitats with direct surface

access is applicable to long-term lunar settlement goals. A long term settlement is

more likely to be constructed of many habitat units, rather than single monolithic

outpost habitats.

For Part B, the more sensitive and strongly connected decisions are the decisions

regarding the intermediate and long-term outpost locations, power generation, and

energy storage technology. Certain alternatives for these decision variables, such as

nuclear power generation or global surface access, could help develop the technology

and experience necessary for eventual human settlement. Deploying intermediate

outposts could provide earlier experience living on an extra-terrestrial planetary body,

which could then benefit the long-term technology development goals for a permanent

settlement.

5.7 Analysis of the Methodology

5.7.1 Impact of the Structural Reasoning Algorithms on Simulation Per-

formance

The performance of the sorting algorithms is measured by their impact on the effi-

ciency of the simulation algorithm. The lunar outpost study provides the opportunity
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to measure the efficiency impact on ADGsort1 and ADGsort2 on two more ADG’s

(one for part A and one for Part B). We follow the same methodology to test structural

reasoning impact as we did in Section 4.6.1 of the Apollo study. Since the number

of possible orderings was very large, we use a random sample of variable orderings

rather than a complete enumeration of all possible orderings.

The performance test for Part A is shown in Figure 5-13 and the performance test

for Part B is shown in Figure 5-14. For part A, which has a smaller number of decision

variables, a larger sample set of 298 random variable orderings was used. For Part

B, which has a large number of decision variables, a smaller sample set of 30 random

orderings was used. This is due to the exponential increase in computation time

required to complete the analysis of Part B’s ADG. This test was run on Windows

2003 sever using an Intel Core 2 Duo 6600 Processor (2.40GHz) with 4 GB of ram.

The Java JVM was version 1.6.

The data in Figures 5-13 and 5-14 shows some similar features to the data from

the previous performance tests in Figure 3-14 (the example ADG problem) and 4-10

(the Apollo Study). Both figures show a correlation between the number of tokens

generated and the total computational time. For Part B, which has 14 decision

variables, the ordering produced by ADGsort1 and ADGsort2 perform within the top

10% of the best ordering in the sample set. For Part A, the ADG has only 8 decision

variables. The performance of ADGsort2 is among the fastest variable orders in the

sample set, however the variable order due to ADGsort1 is only in the top 50% of

variable orderings.
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Figure 5-13: OPNBuild1 Performance for the Outpost Problem, Part A. This test of
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5.8 Summary

This chapter studied the architecture for NASA’s lunar exploration program using

the ADG methodology. The four guiding principles, first presented in Section 4.2.1

were used to transform the architecture problem into a decision problem.

The architecture space was parameterized using a set of decisions related to the

existence of certain campaign elements [HWC07], their locations, and their technol-

ogy configurations. Two policy decisions were included in the decision model: nuclear

policy and anytime return requirements. High-level decisions about the communica-

tions system and surface mobility were also included in the decision model. Logical

Constraints encoding the feasibility of combinations of alternatives for each decision

variables were developed.

Seven property functions were developed. Six of them were aligned with NASA’s

six “guiding themes” for the lunar exploration strategy[NAS06b, Tea07, CN06]: Hu-

man Civilization, Scientific Knowledge, Exploration Preparation, Global Partner-

ships, Economic Expansion, and Public Engagement. The seventh property function

was development risk, a proxy metric for cost and risk.

The decisions, logical constraints, property variables, and property functions were

encoded in an ADG. Once the ADG was created the logical view made it evident

that the decision problem could be divided into two separate sub-problems. Since all

of the property functions used in this study were either multiplicatively or additively

separable functions, it was possible to split the set of decisions into two sub-sets.

The two sets of decisions were called Part A and Part B. Part A included decisions

from the categories of campaign strategy (CS) and human habitation (HH). Part B

included decisions from the categories of communications (CM), outpost power (OP),

and surface mobility (SM).

The simulation of the two ADGs was used to create the set of feasible combinations

of decisions and calculate the property value sensitivities for each one. These results

were plotted in decision space views. The performance of the simulation algorithm

was tested using the two decision variable sorting algorithms, as well as a sample of

random variable orderings.

From an engineering perspective, the ADG analysis of the lunar exploration pro-

gram contributes new insight for the systems architecting effort. From structural

reasoning of the logical view of the ADG alone, we can conclude that the set of deci-

sions in the lunar outpost problem are logically decoupled (Section 5.4). Decoupling

162



these two problems allows engineers to work on these decisions separately. The two

groups of decisions split up the decision variables in to two groups:

• Group A: Decisions related to habitat configurations and types, pressurized

connections, ground access, assembly, and offloading, and pressurized rovers.

• Group B: Decisions related to nuclear policy, power generation, energy storage

technologies, intermediate outposts, intermediate and long-term outpost loca-

tions, communications, and anytime return requirements.

The decisions about the intermediate outpost’s existence and related decisions

are impactful in terms of nearly all property functions used in this study. They are

impactful in the sense that they are the most logically connected to other decisions

and they have a strong potential impact on system properties, as measured by the

property variable sensitivity for development risk, Mars preparation benefit, pub-

lic engagement, economic expansion benefit, science knowledge benefit, and human

civilization benefit.

Decision variables regarding habitat offloading, assembly, and ground access are

moderately coupled compared to all other decision variables in the ADG as measured

by the degree of connectivity. In terms of some of the metrics they have relatively

high property value sensitivities. Specifically, these decisions may be impactful on

development risk, Mars preparation benefit, and human civilization benefit.

Decision variables about the communications configuration are largely decoupled

from the other decisions. They are only logically connected within the subset of

other communications decisions. The selection of the campaign elements does not

depend on the selection of communications technologies and data rates. However,

the decision variable about the data rate, in particular, has a strong potential effect

on public engagement because it may provide a bi-directional gateway for the public

to be connected to the astronauts on the lunar surface.

Two decisions that are not strongly connected to other decisions, but are impactful

on the system properties are the decisions regarding the long sortie and pressurized

rovers. These two decisions are impactful in terms of property variable sensitivity for

Mars exploration preparation, public engagement, scientific knowledge, and human

civilization. Including or excluding long sorties and pressurized rovers does not affect

the feasibility of other architecture options. However, it may affect the number of sites

that can be visited, the frequency of lunar activities of public interest, and the variety

and scope of surface exploration experience from the lunar exploration program.
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The aerospace engineering objective of this study was to identify the most po-

tentially impactful architectural decisions for the lunar exploration program. The

following conclusions can be drawn from this study:

• NASA should carefully analyze intermediate outpost decisions. The intermedi-

ate outpost is highly connected and impactful on property metrics because it is

a potential low-initial cost option to provide early exploration returns.

• NASA should consider dividing engineering analysis teams into groups aligned

with the decision variables from Part A and Part B.

• NASA should carefully consider the tradeoffs between the long-term human

civilization benefits, development risks, and other system properties regarding

the decisions about habitat assembly and ground access.

• NASA should strongly consider the decision variables for including or excluding

long sorties and pressurized rovers, since they both provide benefit in terms

of public engagement and science knowledge. However, since these decision

variables are not strongly connected to other decision variables, these decisions

could be delayed until after other decisions, like the intermediate outpost, power

generation, and habitat configuration decisions are made.

• NASA should consider decisions about the communications systems indepen-

dently of other decision variables. Although a communications systems will

require a power source, there is connectivity, in terms of logical constraints

between the communications system and other parts of the architecture. A

change in the configuration of the communications system will not impact the

feasibility of other architectural decisions.
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6
Conclusions

6.1 Discussion

Decisions in systems architecture are actions that lock down the properties, limit

the functions, limit the forms, or change the concept of a system in order to better

meet the needs and goals of a system’s stakeholders. Decision-making in system

architecture is considered challenging since the decisions are generally non-routine,

significantly consequential, interconnected, and often based on weakly-defined models

of the system. Chapter 1 established that in practice, systems architects refine an

architecture by making decisions. The objective of this thesis was to show that by

creating an explicit representation of architecture as the result of a set of decisions,

a systems architect can effectively reason about an architectural candidate space and

gain useful guidance for the decision-making process.

Chapter 2 surveyed the decision support literature to determine which aspects

of existing methods and tools could be leveraged to meet these objectives. Three

of these methods and tools, the Morphological Method (Section 2.3.1), Constraint

Satisfaction Problems (Section 2.3.3), and Object Process Network (Section 2.3.4)

significantly influenced the research.

Chapter 3 introduced the Architecture Decision Graph (ADG) framework. The

ADG framework represents an architectural candidate space as a interconnected set

of decision variables, logical constraints, property variables, and property functions.

The framework leverages this representation to transform the architecture problem

into a computation problem, generate feasible combinations of decisions, determine

their properties, and present decision support information to the architect. The de-

cision support information presented to the architect includes Pareto front views,

which identify the properties of the set of non-dominated solutions, and decision
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space views, which identify the degree of impact for the architecture’s decision vari-

ables. The usefulness of the ADG framework was demonstrated through two case

studies: a retrospective study of architectural decisions for the Apollo project of the

1960’s (Chapter 4) and a study of architectural decisions for NASA lunar outpost

architecture (Chapter 5).

In the retrospective study of Apollo, it was demonstrated that the most important

decisions were recovered through ADG’s methodology. Specifically, the decision about

Lunar Orbit Rendezvous (yes or no) is clearly identified as a decision that stands

out as highly impactful in the decision space views for mass and risk presented in

Figure 4-9. Historical records [Sea96, BGS79, Han95, MC04, EMB+78, Han99] and

an interview with the chief architect of the Apollo program, Dr. Robert Seamans

[SKK05] concur that the Lunar Orbit Rendezvous mission mode decision was the most

critical and consequential decision for the entire Apollo project. Furthermore, ADG

analysis identified lander crew size and lander fuel type as the next most impactful

decisions. This concurs with the 1961 Houbolt report[Hou61a], which asserts that

the three decisions LOR (yes or no), lander fuel type, and lander crew size were the

most impactful decisions for the 1960’s lunar exploration architecture.

The lunar outpost study in Chapter 5 demonstrated that ADG can be used to

analyze a novel architecting problem. The lunar outpost project is an ongoing effort

by NASA to return astronauts to the moon and establish a long-term lunar outpost

[Ald04]. The application of ADG to this architecting problem was able to identify

important features of this decision problem and identify the decision variables which

have the highest potential impact on the architecture.

Through the application of structural reasoning to the outpost problem, the ADG

framework was able to identify two decoupled groups of decision variables:

1. Decisions involving habitats, pressurized connections, ground access, assem-

bly & offloading, and pressurized rovers.

2. Decisions involving power generation, energy storage, locations, communica-

tions, and anytime return requirements.

The identification of these two logically decoupled groups is significant from an en-

gineering task management perspective because it suggests that these two groups of

decision variables could be studied by two different engineering teams. Since changes

in one of these two groups of decision variables do not affect the feasibility of alter-
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natives for the other group, the engineering teams could study the two parts of the

problem independently.

The lunar outpost study also included decision space views, which identified the

relative degree of impact for each decision variable in terms of its degree of connec-

tivity and property variable sensitivity. A detailed discussion of the insight gained

in the lunar outpost study through the use of the ADG framework is contained in

Section 5.8. The following list is an example of the types of specific conclusions that

were made:

• Decisions about the intermediate outpost’s existence and other intermediate

outpost related decisions are highly coupled with other decisions in the model

and have a potentially strong impact on system properties relative to other

decisions in the model.

• Decisions about communications are largely decoupled from the other decisions.

• Decisions about habitat offloading, assembly, and ground access are also mod-

erately coupled, and in some cases, have strong effect on system properties.

• Including of a pressurized rover in the lunar exploration program is helpful for

Mars preparation, public engagement, scientific knowledge, and human civiliza-

tion. The decision variable about the pressurized rover is largely decoupled

from the rest of the architecture.

• Including a long sortie mission potentially impacts public engagement, science

knowledge, but could be detrimental for development risk. The decision variable

about the long sortie mission is also largely decoupled from the rest of the

architecture.

These conclusions supplement the other on-going analyses of the lunar outpost pro-

gram [HWC07, HSWC07, NAS06d, NAS07]. Future developments in the lunar ex-

ploration program will determine whether or not these decision variables identified

by the ADG framework were truly the driving decision variables in practice.
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6.2 Contributions

The goals of this research were: Develop a way to explicitly represent systems archi-

tectures as the result of a set of interconnected decisions; Develop a tool to leverage

this representation in order to transform an architectural problem in a computational

problem; and Develop views of the architectural decision space that provide guid-

ance for architectural decision-making. The contributions of the ADG framework

presented in this thesis are aligned with these three goals:

• Contribution 1: Architecture Decision Graph (ADG), the representational

aspect of the ADG framework, is a representation of an architecture candidate

space as a set of interconnected decision variables, logical constraints, property

variables, and property functions.

• Contribution 2: The structural reasoning and simulation aspects of the ADG

framework provide the tools to turn an architectural decision problem into a

computational problem.

• Contribution 3: The viewing aspect of the ADG framework provides a visual-

ization of the degree of impact of decision variables in an architecture candidate

space that can be used to inform engineering task breakdown.

6.3 Features of the ADG Framework

Chapter 3 of this thesis describes the Architecture Decision Graph (ADG) framework

for decision support in systems architecting. It supports human decision making by

providing a methodology and tool for analyzing architectures as a set of interrelated

decisions. The features of ADG can be broken down into four categories:

1) ADG provides a explicit representation of architecture as a set of interrelated decisions.

ADG represents system architecting problems as a graph of decision variables, prop-

erty variables, logical constraints, and property functions. Experience using ADG has

shown that it is adequately expressive for solving system architecting problems (see

the case studies, Chapters 4 and 5. It is especially well-suited for non-sequence depen-

dent problems. Since ADG’s simulation engine is based on OPN, it allows multiple

types of property functions to be specified using OPN’s Jython scripting interface.
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2) ADG provides structural reasoning tools for systems architecting:

Since ADG consists of a small set of primitives and a graph structure it provides a

computationally simple and consistent way to extract the degree of connectivity of

decision variables in an architecting problem. Using the structural reasoning tools

provides the ability to identify logically disconnected sub-problems within the ar-

chitecture space (see Section 5.3.8). From an engineering management perspective,

identifying logically disconnected sub-problems provides guidance for engineering task

breakdown.

3) ADG provides simulation tools for identifying and simulating feasible sets of decisions

ADG’s simulation layer enumerates and calculates properties for all feasible combina-

tions of decision variables. In contrast to valued-CSP models, decision trees, influence

diagrams, and sequential decision diagrams, more than one property function can be

calculated for each element in the feasible set. The only restriction on the type of

property function that can be used to calculate a system property in ADG is that

it must be implementable in the Jython scripting language [PR02] and terminate in

finite time.

Simulating a decision problem using ADG is achieved through an automatically

generated OPN model. The OPN model is automatically generated from the infor-

mation about the decision problem encoded in ADG’s graph representation. The

generated model is likely to be more efficient than one generated by hand, since the

construction is sequenced by the ADG’s structural reasoning heuristics. Performance

tests in Chapters 3, 4, and 5 show that the OPN models are built using ADG’s

ordering are among the best 10% in terms of computational resource consumption.

In addition to identifying feasible combinations of decisions, simulation of a de-

cision problem using ADG also identifies all logically infeasible alternatives for de-

cisions. This information is useful since infeasible alternatives can be removed from

consideration in subsequent analysis of the decision problem.

4) ADG provides the decision space view

The decision space view is a visualization of the potential impact that a change in

a decision variable’s assignment could have on a system architecture space. The

degree of impact is calculated in two different ways. The first measure is the decision
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variable’s degree of connectivity. This measures the degree of impact in terms of how

many other decisions are logically connected to a particular decision. A change in a

highly connected decision will potentially change the feasible alternatives in a greater

number of connected decisions.

The second measure is the decision variable’s Property Variable Sensitivity (PVS).

The property variable sensitivity (PVS) is a measure of the potential impact that a

change in each decision variable assignment could have on a system property. PVS

can be considered an enhancement of main effects analysis since it can calculate over

more than two “levels” of decision alternatives; it does not require the selection of a

fixed reference design, and is only measured over the feasible set of solutions.

The decision space view allows a decision maker to determine which decisions are

high or low in each measure of sensitivity. By placing these two measures on one plot,

it is possible to extract a suggested priority order for decisions.

6.4 Future Work

The representational, structural reasoning, simulating, and viewing aspects of ADG

could be improved by further research. Below is a list of ideas for future research in

the development of ADG as architecting tool.

6.4.1 Representing

Cognitive psychology research asserts that an effective representation of a problem

can affect the performance of human problem solvers [Lev00]. By improving the user-

interface of ADG, its effectiveness as a decision support system could be increased. By

increasing the speed of decision problem encoding, a decision-maker could compete

the ADG cycle in Figure 3-1 in less time. Improvements to the human interface

should follow guidelines from the field of cognitive psychology[WH00].

The currently available problem entry methods for ADG are based on text files

generated from spreadsheet software or by directly modifying the ADG graph in the

OPN-Integrated Design Environment [Koo05]. An improved interface could be a web

form which inputs data into a relational database. By using a relational database,

variables could be checked for consistency using standard database tools. In addition,

results from ADG simulation could be stored in a database format to enable flexible

queries of subsets of data.
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Chapters 4 and 5 provide some guidance as to how to choose the “right” decisions

to model in ADG. However, the material provided is not a complete answer to the

question. Since computational resources are finite, a methodology for effectively se-

lecting which decision to model and how to partition alternatives is an open research

area.

Currently, ADG does not explicitly model hierarchical decisions. As shown in

Chapter 5, this issue can be worked around by adding a constraint which forces an

irrelevant decision to take the value “NA”. However, a more explicit way to model

this would involve allowing certain decisions to be turned on or off, depending on

the outcome of another decision. One idea for representing decisions like this is the

hierarchical morphological matrix presented in Reference [Cra07].

Section 4.6.2 pointed out that the ADG framework is well-suited for analyzing

an architecture configuration space which involves decision variables that are not

sequence or time dependent. Time-Expanded Decision Network (TDN), mentioned

in Section 2.3.2 of the literature review, is a method for investigating time-dependant

decisions involving switching between candidate architectures. However, TDN lacks

an automated method for developing the initial candidate architectures. The ADG

framework could be used as a front-end for TDN in order to identify a set of feasible

architectures and possibly to calculate the properties of their switching costs.

6.4.2 Structural Reasoning

Currently, the choice of sorting algorithms is user-input driven. Ideally, ADG should

be able to recognize which types of problems are more likely to benefit from ADGsort1

or ADGsort2.

Other structural reasoning algorithms are possible, such as using join-tree decom-

position to provide a backbone tree for a parallelized OPN executable model. Dechter

and Mateescu[DM07] demonstrated that using join-tree decomposition as a structural

reasoning algorithm can dramatically reduce computational resource consumption for

constraint satisfaction problems. Their work showed that a constraint graph’s compu-

tational time could be reduced from scaling exponentially by the number of decision

variables to exponentially by the product of the tree width1 and the natural log of the

number of decision variables. Progress towards implementing join-tree decomposition

as a structural reasoning algorithm for ADG was reported in Reference [SKC06].

1see [BM96] and [DM07] for definition of tree width
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6.4.3 Simulation

Simulation of an ADG currently does not allow a property variable to be connected

to a logical constraint. However, allowing this type of connection would permit useful

global decision pruning rules, such as “remove this set of decisions from the feasible

set as soon as cost accumulates to greater than x”.

Simulation time and space requirements might be further reduced by using a con-

straint propagation algorithm, similar to ones used in constraint graph problem solv-

ing [RN02]. Constraint propagation algorithms are used to detect infeasible decision

alternatives by looking for inconsistencies with connect logical constraints.

6.4.4 Viewing

The simulation aspect of the ADG methodology produces a potentially large set of

data. There are many potential ways this data could be plotted other than the

two described in Section 3.6. One possibility is graphically representing a decision

tree for a user-selected subset of decision variables. As mentioned in 2.3.2, decision

trees are useful, clear representations of decision problems as long as they include a

relatively small number of variables. A subset decision tree could show the branching

relationship between two to five variables.

An interactive morphological matrix could be used to demonstrate the intercon-

nectivity between decisions. After the feasible set of decisions is generated, a user

could click on alternatives to enable or disable them. The interactive morphological

matrix would respond by disabling alternatives for other decisions that become in-

feasible because of logical constraints. The interactive morphological matrix could be

linked to decision space view plots that change as the set of alternatives is modified

by the user.

6.5 Conclusions

The ADG framework is a generally applicable methodology for reasoning about a

systems architecture. It is especially well-suited for architecting problems that in-

volve determining the static configuration of the mapping of systems forms to system

functions. Using the four principles for formulating an architecture problem as a

decision problem (section 4.2.1), this thesis provides an architect with the guidance
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to parameterize an architectural candidate space into a set of interconnected decision

variables. Through the application of the framework, systems architects have the abil-

ity to generate and evaluate instances of feasible architectures from a combinatorial

space bounded by a set of decision variables.

This thesis is not the first to assert that the process of systems design is about

making decisions (see [Cat06] and [Abr65], for example). There is general agreement

that this assertion is true [DAE+05]. However decision-based design methods are

often criticized by design theorists [MR02, DAE+05] since previous decision-based

design methods have an assumption that the design process can only be enhanced by

a decision-support framework after candidate designs are available. This means that

these decision-based methods are only useful for additional refinement of designs that

already exist. In contrast, the ADG framework does not assume that designs must

exist before ADG is useful. Since ADG explicitly models architecture as the result of

a set of decisions, candidate architectures can be generated by the ADG framework.

This thesis started with the goals to develop an explicit representation of architec-

ture as a set of decisions, and to show that through using this representation, an ar-

chitect can gain useful insight into the architectural candidate space. I conclude that

by contributing the Architecture Decision Graph framework and developing views

and methodologies for engineering task breakdown based on the potential impact of

decisions, this thesis has achieved these goals.
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A
Supplemental Material for the Apollo Study

This appendix contains some additional information about the Apollo study presented

in Chapter 4.

A.1 Apollo Property Functions

The Apollo architecture decision problem in Chapter 4 used two non-separable prop-

erty functions to calculate the risk function and the IMLEO function. The Jython[PR02]

source code for those two functions is listed below.

Listing A.1: ApolloPropertyFunctions.py

import math as m
#import synchronize as sync

dVeoa =9200*100/30
dVeod =11100
dVmoe =3840
dVdom =6798
dVmoa =7468
dvMod =3661
fs = 0.07
g=9.8*100/30;
Isp =311;
Isp1 =315;
Isp2 =425;

f=0.08;
frac_saturn = 0.12;

fi=0.1
eor_vehicle = 0;
lor_vehicle = 0;
lor_v_list = range (0)
eor_launch_count =0;
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def cmMassCalc(cmCrew ):
if (cmCrew ==2):

return 8000;
if (cmCrew ==3):

return 11000;
else:

return 0;

def lmMassCalc(lmCrew ):
if (lmCrew == 1):

return 3000;
if (lmCrew == 2):

return 4000;
if (lmCrew == 3):

return 5000;
else:

return 0;

def sm4MassCalc(cmMass , Isp):
#use Isp1 for now (storable)

return StageMass(dvMod , Isp , cmMass , f);

def lm2MassCalc(LOR ,lmMass , Isp):
if (LOR == no):

return 0;
if (LOR == yes):

return StageMass(dVmoa , Isp , lmMass , f);
else:

return 0;

def lm1MassCalc(LOR ,lm2Mass ,lmMass , Isp):
if (LOR == no):

return 0;
if (LOR == yes):

Mpay = lm2Mass + lmMass;
return StageMass(dVdom , Isp , Mpay , f);

else:
return 0;

def lmTotalMassCalc(lm1Mass ,lm2Mass ,lmMass ):
return lm1Mass+ lm2Mass+ lmMass;

def sm3MassCalc(LOR , sm4Mass ,cmMass , Isp):
if (LOR == yes):

return 0;
if (LOR == no):

Mpay = sm4Mass + cmMass;
return StageMass(dVmoa , Isp , Mpay , f);

def sm2MassCalc(LOR , sm3Mass , sm4Mass , cmMass , Isp):
if (LOR == yes):

return 0;
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if (LOR == no):
Mpay = sm3Mass + sm4Mass + cmMass;
return StageMass(dVdom , Isp , Mpay , f);

else:
return 0;

def sm1MassCalc(lmTotalMass ,sm2Mass ,sm3Mass ,sm4Mass ,cmMass , Isp):
Mpay = lmTotalMass+ sm2Mass +sm3Mass +sm4Mass +cmMass;
return StageMass(dVmoe , Isp , Mpay , f);

def smTotalMassCalc(sm1Mass ,sm2Mass ,sm3Mass ,sm4Mass ):
return sm1Mass + sm2Mass + sm3Mass + sm4Mass;

def s4MassCalc(smTotalMass , lmTotalMass , cmMass ):
Mpay = smTotalMass + lmTotalMass + cmMass;
return StageMass(dVeod , Isp2 , Mpay , f);

def IMLEOCalc(EOR ,earthLaunch ,LOR ,moonArrival ,moonDeparture ,\
cmCrew ,lmCrew ,smFuel ,lmFuel ):

cmMass = cmMassCalc(cmCrew );
sm4Mass = sm4MassCalc(cmMass ,IspCalc(smFuel ));
lmMass = lmMassCalc(lmCrew );
lm2Mass = lm2MassCalc(LOR ,lmMass ,IspCalc(lmFuel ));
lm1Mass = lm1MassCalc(LOR ,lm2Mass ,lmMass , IspCalc(lmFuel ));
lmTotalMass = lmTotalMassCalc(lm1Mass ,lm2Mass ,lmMass );
sm3Mass = sm3MassCalc(LOR , sm4Mass ,cmMass , IspCalc(smFuel) );
sm2Mass = sm2MassCalc(LOR , sm3Mass , sm4Mass , \
cmMass , IspCalc(smFuel ));
sm1Mass = sm1MassCalc(lmTotalMass ,sm2Mass ,sm3Mass ,sm4Mass ,\
cmMass , IspCalc(smFuel ));
smTotalMass = smTotalMassCalc(sm1Mass ,sm2Mass ,sm3Mass ,sm4Mass );
s4Mass = s4MassCalc(smTotalMass , lmTotalMass , cmMass );
IMLEO = s4Mass + smTotalMass + lmTotalMass + cmMass;
return IMLEO;

def MissionRisk(EOR ,earthLaunch ,LOR ,moonArrival ,moonDeparture ,\
cmCrew ,lmCrew ,smFuel ,lmFuel ):

#start with 100%

risk =1.0;
#earth orbit

if (EOR == no):
risk = risk * .98;

if (EOR == yes):
risk = risk * .95;
#second launch risk

risk = risk * .95;
if (earthLaunch == direct ):

risk = risk *.90;
if (earthLaunch == orbit):

risk = risk * .99;
if (LOR==yes):

risk = risk *.95;
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if (LOR==no):
risk = risk * 1;

if (moonArrival == orbit):
#lunar orbit entry

risk = risk * .99;
#decend from lunar orbit

risk = risk * .95;
if (moonArrival == direct ):

#direct decending

risk = risk * .90;
if (moonDeparture == direct ):

risk = risk *.90
if (moonDeparture == orbit):

#direct ascent to earth

risk = risk * .90;
if (cmCrew -lmCrew == 0):

#leaving CM unmanned

risk = risk * .90;
if (lmCrew == 1):

risk = risk *.90;
if (smFuel == cryogenic ):

# .98 for each burn

if (LOR == yes):
multiplier = 2.0;

else:
multiplier = 4.0;

risk = risk * m.pow(0.95 , multiplier );
if (lmFuel == cryogenic ):

#two burns

risk = risk * 0.95 * 0.95;
#direct earth entry

risk = risk * .95;
return risk;

#Mass ratio: mass final / mass initial

def R(deltaV , specImp ):
x=( deltaV /( specImp*g))
ratio = m.exp(-x)
return ratio

#Mass ratio between total / payload

def Rt2p(deltaV , specImp ,f):
r = R(deltaV , specImp)
return 1/(r - f + (f * r) )

#returns totoal initial mass of just this stage (minus payload)

def StageMass(deltaV , specImp , Mpay , f):
totalPayRatio = Rt2p(deltaV , specImp , f);
return (totalPayRatio * (Mpay)- Mpay);

def staged(deltaV , specImp ,f,s):
dV = deltaV/s
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r = R(dV , specImp)
stage = (1/(r - f + (f * r) ))**s
return stage

def IspCalc(fuelType ):
if (fuelType == cryogenic ):

return Isp2;
if (fuelType == storable ):

return Isp1;
else:

return Isp1;
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B
Supplemental Material for the Lunar

Outpost Study

This appendix contains some additional information about the Lunar Outpost study

presented in Chapter 5.

B.1 Alternate Views of the Lunar Outpost ADG

The complete, logical, and properties views of Parts A and B of the Lunar Outpost

ADG are shown in this section.

Figure B-1: Lunar Outpost ADG – Complete View of Part A.
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Figure B-2: Lunar Outpost ADG – Logical View of Part A.

Figure B-3: Lunar Outpost ADG – Properties View of Part A.
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Figure B-4: Lunar Outpost ADG – Complete View of Part B.

Figure B-5: Lunar Outpost ADG – Logical View of Part B.
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Figure B-6: Lunar Outpost ADG – Properties View of Part B.
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programming. In Mehmet Akşit and Satoshi Matsuoka, editors, Pro-
ceedings European Conference on Object-Oriented Programming, volume
1241, pages 220–242. Springer-Verlag, Berlin, Heidelberg, and New York,
1997.

[Koo05] Benjamin H. Y. Koo. A Meta-language for Systems Architecting. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, 2005.

[KSC07a] Benjamin H. Y. Koo, Willard L. Simmons, and Edward F. Crawley.
Algebra of Systems: a meta-language for model synthesis and evaluation.
(unpublished, manuscript submitted for publication), January 2007.

[KSC07b] Benjamin H. Y. Koo, Willard L. Simmons, and Edward F. Crawley.
Algebra of systems: an executable framework for model synthesis and
evaluation. In Proceedings of the 2007 International Conference on Sys-
tems Engineering and Modeling, 2007.

[KSC07c] Benjamin H. Y. Koo, Willard L. Simmons, and Edward F. Crawley.
A valuation technology for product development options using an ex-
ecutable meta-modeling language. In Geilson Loureiro and Richard
Curran, editors, Complex Systems Concurrent Engineering: Collabora-
tion, Technology Innovation and Sustainability, pages 107–115. Springer,
2007.

[LCCR06] Geilson Loureiro, Edward F. Crawley, Sandro Catanzaro, and Eric
Rebentisch. From value to architecture - ranking the objectives of
space exploration. In Proceedings of the 57th International Astronau-
tical Congress, Valencia, Spain, 2006.

192



[Lev00] Nancy G. Leveson. Intent specifications: An approach to building
human-centered specifications. IEEE Transactions on Software Engi-
neering, 26(1):15–35, January 2000.

[LHR99] Nancy G. Leveson, Mats Heimdahl, and Jon Damon Reese. Designing
specification languages for process control systems: Lessons learned and
steps to the future. In SIGSOFT FOSE ’99 (Foundations of Software
Engineering), Toulouse, France, September 1999.

[Mae06] John Maeda. The Laws of Simplicity. MIT Press, 2006.

[Mat07] Robert Eugeniu Mateescu. AND/OR Search Spaces for Graphical Mod-
els. PhD thesis, University of California, Irvine, June 2007.

[MC04] C. Murray and C. B. Cox. Apollo. South Mountain Books, 2004.

[Mon82] G.E. Monahan. A Survey of Partially Observable Markov Decision Pro-
cesses: Theory, Models, and Algorithms. Management Science, 28(1):1–
16, 1982.

[MR02] Mark W. Maier and Eberhardt Rechtin. The Art of Systems Architecting.
CRC Press, 2nd edition, 2002.

[NAS06a] NASA. Lunar Exploration Objectives. electronic distribution through
NASA.gov, December 2006.

[NAS06b] NASA. “why the moon?”, http://www.nasa.gov/pdf/163561main

why moon2.pdf. NASA Public Relations Poster, December 4 2006.

[NAS06c] NASA Headquarters. NASA Selects Orion Crew Exploration Vehicle
Prime Contractor. Press Release 06-305, August 31 2006.

[NAS06d] NASA Lunar Architecture Team (LAT). Briefing on Lunar Exlpora-
tion Strategy and Architecture. In Proceedings of 2nd Space Exploration
Conference, Houston, TX, December 2006.

[NAS07] NASA Exploration Systems Mission Directorate. Lunar Architecture
Update. Presentation at AIAA Space 2007, September 20 2007.

[OMG03] OMG. Unified Modeling Language (UML), version 1.5, volume 1. Object
Management Group, 2003.

[Orl04] Richard W. Orloff. APOLLO BY THE NUMBERS: A Statistical Refer-
ence SP-2000-4029. NASA History Division, Washington, D.C., Septem-
ber 2004.

[Par97] Vilfredo Pareto. Cours d’Economique Politique. Lausanne & Paris,
1897.

193

http://www.nasa.gov/pdf/163561main_why_moon2.pdf
http://www.nasa.gov/pdf/163561main_why_moon2.pdf


[Par69] Vilfredo Pareto. Manual of Political Economy. Augustus M Kelley Pubs,
reprint edition, May 1969.

[PB95] G. Pahl and W. Beitz. Engineering Design: A Systematic Approach.
Springer, 2nd edition, 1995.

[Pet62] C. A. Petri. Kommunikation mit Automaten. PhD thesis, University of
Bonn, 1962.

[Pet81] J. L. Peterson. Petri-Net Theory and the Modeling of Systems. Prentice-
Hall, Englewood Cliff, N.J, 1981.

[Pow02] Daniel J. Power. Decision Support Systems: Concepts and Resources for
Managers. Quorum Books, 2002.

[PR02] S. Pedroni and N. Rapping. Jython Essentials. O’Reilly, Sebastopol,
CA, March 2002.

[Puc06] Daniela Pucci de Farias. 2.193 decision-making in large scale systems –
lecture notes. MIT Department of Mechanical Engineering, Spring 2006.

[PW00] Panos Y. Papalambros and Douglass J. Wilde. Principles of Optimal
Design: Modeling and Computation. Cambridge University Press, 2nd
edition, 2000.

[Rab89] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257–
286, Feb 1989.

[Rai68] Howard Raiffa. Decision Analysis: Introductory Lectures on Choices
Under Uncertainty. Addison-Wesley, 1968.

[RCL+05] Eric S. Rebentisch, Edward F. Crawley, Geilson Loureiro, John Q. Dick-
mann, and Sandro N. Catanzaro. Using stakeholder value analysis to
build exploration sustainability. In Proceedings of 1st Space Exploration
Conference, Orlando, Florida, 2005. AIAA.

[Rec91] Eberhardt Rechtin. Systems Architecting: Creating and Building Com-
plex Systems. Prentice Hall, Englewood Cliffs, NJ, 1991.

[Rit06] T. Ritchey. Problem structuring using computer-aided morphological
analysis. Journal of the Operational Research Society, 57:792–801, 2006.

[RJ86] Lawrence R. Rabiner and B. Juang. An Introduction to Hidden Markov
Models. IEEE ASSP Magazine, pages 4–16, January 1986.

[RN02] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 2nd edition, 2002.

194



[Roa96] Curtis Roads. The Computer Music Tutorial. MIT Press, 1996.

[Roz07] Ziv Rozenblum. Object-Process Networks & Object-Process Diagrams
– Implementation Issues for Oil Exploration Systems. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, MA, May 2007.

[Sch07] Jeffry G. Schreiber. Status of the NASA Stirling Radioisotope Project.
Technical Report TM—2007-214804, NASA, Glenn Research Center,
Cleveland, Ohio, May 2007.

[SdW07] Matthew R. Silver and Olivier L. de Weck. Time-Expanded Decision
Networks: A framework for designing evolvable complex systems. Sys-
tems Engineering, 10(2):167–188, 2007.

[Sea96] Robert C. Seamans. Aiming At Targets: The Autobiography Of Robert
C. Seamans, Jr. NASA, 1996.

[Sea05] Robert C. Seamans, Jr. Project Apollo: The Tough Decisions. Mono-
graphs in Aerospace History Number 37. NASA SP-2005-4537, Wash-
ington, D.C., 2005.

[SFV95] Thomas Schiex, H. Fargier, and G. Verfaillie. Valued Constraint Satis-
faction Problems: hard and easy problems. In Proceedings of IJCAI95,
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